Source code for Thermobar.olivine_liquid_olivine_spinel_thermometry

import numpy as np
import matplotlib.pyplot as plt
from functools import partial
import inspect
import warnings as w
import numbers
import pandas as pd


from Thermobar.core import *
from Thermobar.mineral_equilibrium import *

## Functions for olivine-liquid hygrometry
[docs]def H_Gavr2016(*, CaO_Liq, MgO_Liq, CaO_Ol): ''' Olivine-Liquid hygrometer of Gavrilenko et al. (2016). ''' DCa_dry_HighMgO=0.00042*MgO_Liq+0.0196 DCa_dry_LowMgO=-0.0043*MgO_Liq+0.072 DCa_dry_calc=np.empty(len(MgO_Liq), dtype=float) DeltaCa=np.empty(len(MgO_Liq), dtype=float) H2O_Calc=np.empty(len(MgO_Liq), dtype=float) DCa_Meas=CaO_Ol/CaO_Liq DCa_Divider=0.00462*MgO_Liq-0.027 for i in range(0, len(MgO_Liq)): if DCa_Meas[i]<=DCa_Divider[i]: DCa_dry_calc[i]=DCa_dry_HighMgO[i] DeltaCa[i]=DCa_dry_calc[i]-DCa_Meas[i] H2O_Calc[i]=397*DeltaCa[i] else: DCa_dry_calc[i]=DCa_dry_LowMgO[i] DeltaCa[i]=DCa_dry_calc[i]-DCa_Meas[i] H2O_Calc[i]=188*DeltaCa[i] H2O_Calc[CaO_Ol==0]=np.nan return H2O_Calc
Liquid_olivine_hygr_funcs = {H_Gavr2016} Liquid_olivine_hygr_funcs_by_name = {p.__name__: p for p in Liquid_olivine_hygr_funcs}
[docs]def calculate_ol_liq_hygr(*, liq_comps=None, ol_comps=None, equationH=None, eq_tests=False, P=None, T=None, meltmatch=None, equationT=None, Fe3Fet_Liq=None): ''' Olivine-liquid hygrometer. Returns the estimated H2O content in wt% Parameters ------- liq_comps: pandas.DataFrame liquid compositions with column headings SiO2_Liq, MgO_Liq etc. ol_comps: pandas.DataFrame Olivine compositions with column headings SiO2_Ol, MgO_Ol etc. equationH: str H_Gavr2016 (P-independent, H2O_independent) eq_tests: bool if true, calculates Kd for olivine-liquid pairs. Other inputs for these tests: P: int, flt, pandas.Series (needed for Toplis Kd calculation). If nothing inputted, P set to 1 kbar T: int, flt, pandas.Series (needed for Toplis KD calculation). Can also specify equationT="" to calculate temperature using an olivine-liquid thermometer, using the calculated H2O content from the hygrometer Fe3Fet_Liq: int, flt, pandas.Series. As Kd calculated using only Fe2 in the Liq. Returns ------- pandas.core.series.Series H2O content in wt%. ''' # These are checks that our inputs are okay try: func = Liquid_olivine_hygr_funcs_by_name[equationH] except KeyError: raise ValueError(f'{equationH} is not a valid equation') from None sig=inspect.signature(func) if meltmatch is None: ol_comps_c=ol_comps.copy() liq_comps_c=liq_comps.copy() if Fe3Fet_Liq is not None: liq_comps_c['Fe3Fet_Liq'] = Fe3Fet_Liq if len(liq_comps) != len(ol_comps): raise ValueError('The panda series entered for olivine isnt the same length as for liquids') anhyd_cat_frac = calculate_anhydrous_cat_fractions_liquid(liq_comps=liq_comps_c) ol_cat_frac = calculate_cat_fractions_olivine(ol_comps=ol_comps_c) Liq_Ols = pd.concat([ol_comps_c, anhyd_cat_frac, ol_cat_frac], axis=1) if meltmatch is not None: Liq_Ols=meltmatch kwargs = {name: Liq_Ols[name] for name, p in sig.parameters.items() if p.kind == inspect.Parameter.KEYWORD_ONLY} H2O_Calc_np=func(**kwargs) H2O_Calc=pd.Series(H2O_Calc_np) if eq_tests is False and meltmatch is None: return H2O_Calc if eq_tests is False and meltmatch is not None: if 'H2O_calc' in Liq_Ols.columns: print("Column already exists in dataframe. Have ovewritten") Liq_Ols['H2O_calc']=H2O_Calc else: Liq_Ols.insert(0, 'H2O_calc', H2O_Calc) if eq_tests is True: if P is None: P = 1 print( 'You have not selected a pressure, so we have calculated Toplis Kd at 1kbar') if T is None and equationT is None: raise ValueError('Temperature needed to calculate Delta Kd using Toplis.' 'Either enter T, or specify equationT=""') if equationT is not None: # If not melt match, do separatly #if meltmatch is None: T=calculate_ol_liq_temp(meltmatch=Liq_Ols, equationT=equationT, H2O_Liq=H2O_Calc, P=P, eq_tests=eq_tests).T_K_calc # If melt match do on combined dataframe # if meltmatch is not None: # T=calculate_ol_liq_temp(ol_comps=ol_comps, liq_comps=liq_comps, # equationT=equationT, H2O_Liq=H2O_Calc, P=P).T_K_calc ol_fo = (Liq_Ols['MgO_Ol'] / 40.3044) / \ ((Liq_Ols['MgO_Ol'] / 40.3044) + Liq_Ols['FeOt_Ol'] / 71.844) KdFeMg_Meas = ( ((Liq_Ols['FeOt_Ol'] / 71.844) / (Liq_Ols['MgO_Ol'] / 40.3044)) / ((Liq_Ols['FeOt_Liq'] * (1 - Liq_Ols['Fe3Fet_Liq'] ) / 71.844) / (Liq_Ols['MgO_Liq'] / 40.3044)) ) Kd_func = partial(calculate_toplis2005_kd, SiO2_mol=Liq_Ols['SiO2_Liq_mol_frac'], Na2O_mol=Liq_Ols['Na2O_Liq_mol_frac'], K2O_mol=Liq_Ols['Na2O_Liq_mol_frac'], P=P, H2O=Liq_Ols['H2O_Liq'], T=T) Kd_Toplis_calc = Kd_func(ol_fo) DeltaKd_Toplis = KdFeMg_Meas - Kd_Toplis_calc DeltaKd_Roeder = KdFeMg_Meas - 0.3 DeltaKd_Matzen = KdFeMg_Meas - 0.34 if equationT is None: df = pd.DataFrame(data={'H2O_calc': H2O_Calc, 'Temp used for calcs': T, 'P used for calcs': P, 'Kd Meas': KdFeMg_Meas, 'Kd calc (Toplis)': Kd_Toplis_calc,'ΔKd, Toplis (M-P)': DeltaKd_Toplis, 'ΔKd, Roeder (M-P)': DeltaKd_Roeder, 'ΔKd, Matzen (M-P)': DeltaKd_Matzen}) if equationT is not None: df = pd.DataFrame(data={'H2O_calc': H2O_Calc, 'T_K_calc': T, 'P used for calcs': P, 'Kd Meas': KdFeMg_Meas, 'Kd calc (Toplis)': Kd_Toplis_calc,'ΔKd, Toplis (M-P)': DeltaKd_Toplis, 'ΔKd, Roeder (M-P)': DeltaKd_Roeder, 'ΔKd, Matzen (M-P)': DeltaKd_Matzen}) df_out = pd.concat([df, Liq_Ols], axis=1) return df_out
[docs]def calculate_ol_liq_hygr_matching(*, liq_comps, ol_comps, equationH, eq_tests=False, T=None, equationT=None, P=None, Fe3Fet_Liq=None, iterations=30): ''' Evaluates all possible Ol-liq pairs for H2O returns H2O and equilibrium test values. Parameters ---------------- ol_comps: pandas.DataFrame Panda DataFrame of Ol compositions with column headings SiO2_Ol, CaO_Ol etc. liq_comps: pandas.DataFrame Panda DataFrame of liq compositions with column headings SiO2_Liq etc. EquationH: str Choose from: | H_Gavr2016 (P-independent, T-independent) iterations: int number of times to iterate temperature and H2O. Default 30. Returns ------- pandas.DataFrame H2O (wt%) for all posible ol-liq matches, along with equilibrium tests, components and input mineral compositions ''' ol_comps_c=ol_comps.copy() liq_comps_c=liq_comps.copy() #Check valid equation for T try: func = Liquid_olivine_hygr_funcs_by_name[equationH] except KeyError: raise ValueError(f'{equationH} is not a valid equation for Ol-Liquid Hygrometry') from None sig=inspect.signature(func) # This is a duplication step, to pair up all possible mathes. First we give a unique identifier ol_comps_c['ID_Ol'] = ol_comps_c.index liq_comps_c['ID_liq'] = liq_comps_c.index.astype('float64') if "Sample_ID_Ol" not in ol_comps: ol_comps_c['Sample_ID_Ol'] = ol_comps.index.astype('float64') if "Sample_ID_liq" not in liq_comps: liq_comps_c['Sample_ID_liq'] = liq_comps.index.astype('float64') anhyd_liq_frac = calculate_anhydrous_cat_fractions_liquid(liq_comps=liq_comps_c) ol_cat_frac1 = calculate_cat_fractions_olivine(ol_comps=ol_comps_c) ol_cat_frac= pd.concat([ol_comps_c, ol_cat_frac1], axis=1) # This duplicates Ols, repeats liq1-liq1*N, liq2-liq2*N etc. DupOls = pd.DataFrame(np.repeat(ol_cat_frac.values, np.shape( anhyd_liq_frac)[0], axis=0)) # .astype('float64') DupOls.columns = ol_cat_frac.columns # This duplicates liquids like liq1-liq2-liq3 for liq1, liq1-liq2-liq3 for # liq2 etc. Dupliqs = pd.concat([anhyd_liq_frac ] * np.shape(ol_cat_frac)[0]).reset_index(drop=True) # Combines these merged liquids and liq dataframes Combo_Ol_liqs = pd.concat([Dupliqs, DupOls], axis=1) Combo_Ol_liqs_1 = Combo_Ol_liqs.copy() # Combo_Ols_liqs_1['K_Barth'] = Combo_Ols_liqs_1['Ab_liq'] / \ # Combo_Ols_liqs_1['Ab_Ol'] LenCombo = str(np.shape(Combo_Ol_liqs)[0]) LenOl=len(ol_comps) LenLiqs=len(liq_comps) print("Considering N=" + str(LenOl) + " Ol & N=" + str(LenLiqs) +" Liqs, which is a total of N="+ str(LenCombo) + " Liq- Ol pairs, be patient if this is >>1 million!") if equationT is None: CalcH2O=calculate_ol_liq_hygr(meltmatch=Combo_Ol_liqs, equationH=equationH, T=T, P=P, eq_tests=eq_tests, Fe3Fet_Liq=Fe3Fet_Liq) if equationT is not None: CalcH2O=calculate_ol_liq_hygr(meltmatch=Combo_Ol_liqs, equationH=equationH, equationT=equationT, P=P, eq_tests=eq_tests, Fe3Fet_Liq=Fe3Fet_Liq) return CalcH2O
## Functions for olivine-Liquid thermometry # Defining functions where DMg is measured.
[docs]def T_Beatt93_ol(P, *, Den_Beat93): ''' Olivine-Liquid thermometer: Beattie (1993). Putirka (2008) suggest this is the best olivine-liquid thermometer for anhydrous conditions at relatively low pressures. ''' return (((113.1 * 1000) / 8.3144 + (0.1 * P * 10**9 - 10**5) * 4.11 * (10**(-6)) / 8.3144) / Den_Beat93)
# This is equation 19 from Putirka 2008
[docs]def T_Beatt93_ol_HerzCorr(P, *, Den_Beat93): ''' Olivine-Liquid thermometer: Beattie (1993) with correction of Herzberg and O'Hara (2002), eliminating systematic error at higher pressures Anhydrous SEE=±44°C Hydrous SEE=±53°C ''' return (((113.1 * 1000 / 8.3144 + (0.0001 * (10**9) - 10**5) * 4.11 * (10**(-6)) / 8.3144) / Den_Beat93) + 54 * (0.1 * P) + 2 * (0.1 * P)**2)
[docs]def T_Put2008_eq19(P, *, DMg_Meas, CNML, CSiO2L, NF): ''' Olivine-Liquid thermometer originally from Beattie, (1993), form from Putirka (2008) ''' return ((13603) + (4.943 * 10**(-7)) * ((0.1 * P)*10**9 - 10**(-5))) / (6.26 + 2 * np.log(DMg_Meas) + 2 * np.log(1.5 * CNML) + 2 * np.log(3 * CSiO2L) - NF)
[docs]def T_Put2008_eq21(P, *, DMg_Meas, Na2O_Liq, K2O_Liq, H2O_Liq): ''' Olivine-Liquid thermometer: Putirka (2008), equation 21 (originally Putirka et al., 2007, Eq 2). Recalibration of Beattie (1993) to account for the pressures sensitivity noted by Herzberg and O'Hara (2002), and esliminates the systematic error of Beattie (1993) for hydrous compositions. Anhydrous SEE=±53°C Hydrous SEE=±36°C ''' return (1 / ((np.log(DMg_Meas) + 2.158 - 5.115 * 10**(-2) * (Na2O_Liq + K2O_Liq) + 6.213 * 10**(-2) * H2O_Liq) / (55.09 * 0.1 * P + 4430)) + 273.15)
[docs]def T_Put2008_eq22(P, *, DMg_Meas, CNML, CSiO2L, NF, H2O_Liq): ''' Olivine-Liquid thermometer: Putirka (2008), equation 22 (originally Putirka et al., 2007, Eq 4). Recalibration of Beattie (1993) to account for the pressures sensitivity noted by Herzberg and O'Hara (2002), and esliminates the systematic error of Beattie (1993) for hydrous compositions. Putirka (2008) suggest this is the best olivine-liquid thermometer for hydrous melts. Anhydrous SEE±45°C Hydrous SEE±29°C ''' return ((15294.6 + 1318.8 * 0.1 * P + 2.48348 * ((0.1 * P)**2)) / (8.048 + 2.8352 * np.log(DMg_Meas) + 2.097 * np.log(1.5 * CNML) + 2.575 * np.log(3 * CSiO2L) - 1.41 * NF + 0.222 * H2O_Liq + 0.5 * (0.1 * P)) + 273.15)
[docs]def T_Sisson1992(P, *, KdMg_TSG1992): ''' Olivine-Liquid thermometer: Sisson and Grove (1992). Putirka (2008) suggests this thermometer is best in peridotitic systems containing 2-25 wt% CO2. ''' return ((4129 + 0.0146 * (P*1000-1)) / (np.log10(KdMg_TSG1992) + 2.082))
[docs]def T_Pu2017(P=None, *, NiO_Ol_mol_frac, FeOt_Liq_mol_frac, MnO_Liq_mol_frac, MgO_Liq_mol_frac, CaO_Liq_mol_frac, NiO_Liq_mol_frac, Al2O3_Liq_mol_frac, TiO2_Liq_mol_frac, SiO2_Liq_mol_frac): ''' Olivine-Liquid thermometer: Pu et al. (2017). Uses D Ni (ol-melt) rather than D Mg (ol-melt), meaning this thermometer has far less sensitivity to H2O or pressure at 0-1 GPa. SEE=±29°C ''' D_Ni_Mol = NiO_Ol_mol_frac / NiO_Liq_mol_frac XNm = FeOt_Liq_mol_frac + MnO_Liq_mol_frac + \ MgO_Liq_mol_frac + CaO_Liq_mol_frac + NiO_Liq_mol_frac NFX = 3.5 * np.log(1 - Al2O3_Liq_mol_frac) + 7 * \ np.log(1 - TiO2_Liq_mol_frac) return 9416 / (np.log(D_Ni_Mol) + 0.71 * np.log(XNm) - 0.349 * NFX - 0.532 * np.log(SiO2_Liq_mol_frac) + 4.319)
[docs]def T_Pu2021(P, *, NiO_Ol_mol_frac, FeOt_Liq_mol_frac, MnO_Liq_mol_frac, MgO_Liq_mol_frac, CaO_Liq_mol_frac, NiO_Liq_mol_frac, Al2O3_Liq_mol_frac, TiO2_Liq_mol_frac, SiO2_Liq_mol_frac): ''' Olivine-Liquid thermometer: Pu et al. (2017), with the pressure correction of Pu et al. (2021). Uses D Ni (ol-melt) rather than D Mg (ol-melt), meaning this thermometer has far less sensitivity to melt H2O than other olivine-liquid thermometers. SEE=±45°C (for the 2017 expression). ''' D_Ni_Mol = NiO_Ol_mol_frac / NiO_Liq_mol_frac XNm = FeOt_Liq_mol_frac + MnO_Liq_mol_frac + \ MgO_Liq_mol_frac + CaO_Liq_mol_frac + NiO_Liq_mol_frac NFX = 3.5 * np.log(1 - Al2O3_Liq_mol_frac) + 7 * \ np.log(1 - TiO2_Liq_mol_frac) return (9416 / (np.log(D_Ni_Mol) + 0.71 * np.log(XNm) - 0.349 * NFX - 0.532 * np.log(SiO2_Liq_mol_frac) + 4.319)) - 70 + 110 * (P * 0.1) - 18 * (P * 0.1)**2
## Listing all equation options Liquid_olivine_funcs = {T_Beatt93_ol, T_Beatt93_ol_HerzCorr, T_Put2008_eq19, T_Put2008_eq21, T_Put2008_eq22, T_Sisson1992, T_Pu2017, T_Pu2021} Liquid_olivine_funcs_by_name = {p.__name__: p for p in Liquid_olivine_funcs} ## Function for calculating olivine-liquid temperature using various equations.
[docs]def calculate_ol_liq_temp_matching(*, liq_comps, ol_comps, eq_tests=False, equationT=None, P=None, H2O_Liq=None, Fe3Fet_Liq=None, iterations=30): ''' Evaluates all possible Ol-liq pairs for temperature, and calculates equilibrium tests Parameters ---------------- ol_comps: pandas.DataFrame Panda DataFrame of Ol compositions with column headings SiO2_Ol, CaO_Ol etc. liq_comps: pandas.DataFrame Panda DataFrame of liq compositions with column headings SiO2_Liq etc. equationT: str T_Beatt93_ol (P-dependent, H2O_independent) T_Beatt93_ol_HerzCorr (P-dependent, H2O_independent) T_Put2008_eq21 (P-dependent, H2O-dependent) T_Put2008_eq22 (P-dependent, H2O-dependent) T_Sisson1992 (P-dependent, H2O_independent) T_Pu2017 (P-independent, H2O_independent) T_Pu2021 (P-dependent, H2O_independent) P: float, int, pandas.Series, str ("Solve") Pressure in kbar Only needed for P-sensitive thermometers. If enter P="Solve", returns a partial function Else, enter an integer, float, or panda series H2O_Liq: optional. If None, uses H2O_Liq column from input. If int, float, pandas.Series, uses this instead of H2O_Liq Column iterations: int number of times to iterate temperature and H2O. Default 30. Returns ------- pandas.DataFrame Temp (K) for all posible ol-liq matches, along with equilibrium tests, components and input mineral compositions ''' ol_comps_c=ol_comps.copy() liq_comps_c=liq_comps.copy() #Check valid equation for T try: func = Liquid_olivine_funcs_by_name[equationT] except KeyError: raise ValueError(f'{equationT} is not a valid equation for Ol-Liquid Hygrometry') from None sig=inspect.signature(func) # This is a duplication step, to pair up all possible mathes. First we give a unique identifier ol_comps_c['ID_Ol'] = ol_comps_c.index liq_comps_c['ID_liq'] = liq_comps_c.index.astype('float64') if "Sample_ID_Ol" not in ol_comps: ol_comps_c['Sample_ID_Ol'] = ol_comps.index.astype('float64') if "Sample_ID_liq" not in liq_comps: liq_comps_c['Sample_ID_liq'] = liq_comps.index.astype('float64') anhyd_liq_frac = calculate_anhydrous_cat_fractions_liquid(liq_comps=liq_comps_c) ol_cat_frac1 = calculate_cat_fractions_olivine(ol_comps=ol_comps_c) ol_cat_frac= pd.concat([ol_comps_c, ol_cat_frac1], axis=1) # This duplicates Ols, repeats liq1-liq1*N, liq2-liq2*N etc. DupOls = pd.DataFrame(np.repeat(ol_cat_frac.values, np.shape( anhyd_liq_frac)[0], axis=0)) # .astype('float64') DupOls.columns = ol_cat_frac.columns # This duplicates liquids like liq1-liq2-liq3 for liq1, liq1-liq2-liq3 for # liq2 etc. Dupliqs = pd.concat([anhyd_liq_frac ] * np.shape(ol_cat_frac)[0]).reset_index(drop=True) # Combines these merged liquids and liq dataframes Combo_Ol_liqs = pd.concat([Dupliqs, DupOls], axis=1) Combo_Ol_liqs_1 = Combo_Ol_liqs.copy() # Combo_Ols_liqs_1['K_Barth'] = Combo_Ols_liqs_1['Ab_liq'] / \ # Combo_Ols_liqs_1['Ab_Ol'] LenCombo = str(np.shape(Combo_Ol_liqs)[0]) LenOl=len(ol_comps) LenLiqs=len(liq_comps) print("Considering N=" + str(LenOl) + " Ol & N=" + str(LenLiqs) +" Liqs, which is a total of N="+ str(LenCombo) + " Liq-Ol pairs, be patient if this is >>1 million!") CalcT=calculate_ol_liq_temp(equationT=equationT, meltmatch=Combo_Ol_liqs, Fe3Fet_Liq=Fe3Fet_Liq, H2O_Liq=H2O_Liq, eq_tests=eq_tests, P=P) Fo=calculate_ol_fo(ol_comps=ol_comps) CalcT.insert(1, 'Ol_Fo_Meas', Fo, ) df_out=pd.concat([CalcT, Combo_Ol_liqs_1], axis=1) return df_out
[docs]def calculate_ol_liq_temp(*, equationT, liq_comps=None, ol_comps=None, meltmatch=None, P=None, NiO_Ol_Mol=None, H2O_Liq=None, Fe3Fet_Liq=None, eq_tests=False): ''' Olivine-liquid thermometers. Returns the temperature in Kelvin, along with calculations of Kd-Fe-Mg equilibrium tests. Parameters ------- liq_comps: pandas.DataFrame liquid compositions with column headings SiO2_Liq, MgO_Liq etc. ol_comps: pandas.DataFrame Olivine compositions with column headings SiO2_Ol, MgO_Ol etc. equationT: str T_Beatt93_ol (P-dependent, H2O_independent) T_Beatt93_ol_HerzCorr (P-dependent, H2O_independent) T_Put2008_eq21 (P-dependent, H2O-dependent) T_Put2008_eq22 (P-dependent, H2O-dependent) T_Sisson1992 (P-dependent, H2O_independent) T_Pu2017 (P-independent, H2O_independent) T_Pu2021 (P-dependent, H2O_independent) P: float, int, pandas.Series, str ("Solve") Pressure in kbar Only needed for P-sensitive thermometers. If enter P="Solve", returns a partial function Else, enter an integer, float, or panda series H2O_Liq: optional. If None, uses H2O_Liq column from input. If int, float, pandas.Series, uses this instead of H2O_Liq Column Returns ------- pandas.core.series.Series Temperatures in kelvin. ''' # These are checks that our inputs are okay try: func = Liquid_olivine_funcs_by_name[equationT] except KeyError: raise ValueError(f'{equationT} is not a valid equation') from None sig=inspect.signature(func) # Replacing H2O and Fe3FeT if relevant if meltmatch is None: if isinstance(P, pd.Series): if len(P) != len(liq_comps): raise ValueError('The panda series entered for pressure isnt the same length ' 'as the dataframe of liquid compositions') if len(liq_comps) != len(ol_comps): raise ValueError('The panda series entered for olivine isnt the same length as for liquids') liq_comps_c = liq_comps.copy() ol_comps_c=ol_comps.copy() if H2O_Liq is not None: liq_comps_c['H2O_Liq'] = H2O_Liq if Fe3Fet_Liq is not None: liq_comps_c['Fe3Fet_Liq'] = Fe3Fet_Liq # Allows different calculation scheme for Ni-bearing equations if equationT == "T_Pu2017" or equationT == "T_Pu2021": anhyd_mol_frac_Ni = calculate_anhydrous_mol_fractions_liquid_Ni( liq_comps=liq_comps_c) if NiO_Ol_Mol is None: ol_mol_frac_Ni = calculate_mol_fractions_olivine_ni( ol_comps=ol_comps_c) Liq_Ols_Ni = pd.concat([anhyd_mol_frac_Ni, ol_mol_frac_Ni], axis=1) if eq_tests is True: anhyd_cat_frac = calculate_anhydrous_cat_fractions_liquid( liq_comps=liq_comps_c) Liq_Ols = pd.concat([Liq_Ols_Ni, liq_comps_c], axis=1) # This means the equilibrium testwork if NiO_Ol_Mol is not None: if eq_tests is True and ol_comps is None: raise Exception( 'you dont have any ol compositions, so we cant calculate Kd values') NiO_Ol_Mol = NiO_Ol_Mol Liq_Ols_Ni = anhyd_mol_frac_Ni.copy() Liq_Ols_Ni['NiO_Ol_mol_frac'] = NiO_Ol_Mol if equationT == "T_Pu2017": func = T_Pu2017 kwargs = {name: Liq_Ols_Ni[name] for name, p in inspect.signature( func).parameters.items() if p.kind == inspect.Parameter.KEYWORD_ONLY} T_K=func(**kwargs) if equationT=="T_Pu2021": if P is None: raise ValueError(f'{equationT} requires you to enter P, or set P=Solve') func = T_Pu2021 kwargs = {name: Liq_Ols_Ni[name] for name, p in inspect.signature( func).parameters.items() if p.kind == inspect.Parameter.KEYWORD_ONLY} T_K=func(P, **kwargs) else: # Keiths spreadsheets dont use Cr2O3 and P2O5. So have set this to zero. liq_comps_c['Cr2O3_Liq']=0 liq_comps_c['P2O5_Liq']=0 ol_comps_c['Cr2O3_Ol']=0 ol_comps_c['P2O5_Ol']=0 # Now calculate cation fractions if meltmatch is None: anhyd_cat_frac = calculate_anhydrous_cat_fractions_liquid(liq_comps=liq_comps_c) ol_cat_frac = calculate_cat_fractions_olivine(ol_comps=ol_comps_c) Liq_Ols = pd.concat([anhyd_cat_frac, ol_cat_frac, ol_comps_c], axis=1) if meltmatch is not None: if equationT == "T_Pu2017" or equationT == "T_Pu2021": raise Exception('Sorry, we havent yet integrated the Pu equations into this method. We can do this if you need it') Liq_Ols=meltmatch # This performs extra calculation steps for Beattie equations if equationT == "T_Put2008_eq22" or equationT == "T_Put2008_eq21" or \ equationT == "T_Beatt93_ol" or equationT == "T_Beatt93_ol_HerzCorr" or equationT=="T_Put2008_eq19": Liq_Ols['DMg_Meas'] = Liq_Ols['Mg_Ol_cat_frac'].astype(float) /Liq_Ols['Mg_Liq_cat_frac'].astype(float) Liq_Ols['CNML'] = (Liq_Ols['Mg_Liq_cat_frac'] + Liq_Ols['Fet_Liq_cat_frac'] + Liq_Ols['Ca_Liq_cat_frac'] + Liq_Ols['Mn_Liq_cat_frac']) Liq_Ols['CSiO2L'] = Liq_Ols['Si_Liq_cat_frac'] Liq_Ols['NF'] = (7 / 2) * np.log(1 - Liq_Ols['Al_Liq_cat_frac'] ) + 7 * np.log(1 - Liq_Ols['Ti_Liq_cat_frac']) Liq_Ols['Den_Beat93'] = 52.05 / 8.3144 + 2 * np.log(Liq_Ols['DMg_Meas']) + 2 * np.log( 1.5 * Liq_Ols['CNML']) + 2 * np.log(3 * Liq_Ols['CSiO2L']) - Liq_Ols['NF'] if equationT == "T_Sisson1992": Liq_Ols['KdMg_TSG1992'] = (Liq_Ols['Mg_Ol_cat_frac'] / (Liq_Ols['Mg_Liq_cat_frac'] * (Liq_Ols['Si_Liq_cat_frac']**(0.5)))) # Checks if P-dependent function you have entered a P if sig.parameters['P'].default is not None: if P is None: raise ValueError(f'{equationT} requires you to enter P') else: if P is not None: print('Youve selected a P-independent function') kwargs = {name: Liq_Ols[name] for name, p in sig.parameters.items() if p.kind == inspect.Parameter.KEYWORD_ONLY} if isinstance(P, str) or P is None: if P == "Solve": T_K = partial(func, **kwargs) if P is None: T_K=func(**kwargs) else: T_K=func(P, **kwargs) if eq_tests is False: KdFeMg_Meas = ( ((Liq_Ols['FeOt_Ol'] / 71.844) / (Liq_Ols['MgO_Ol'] / 40.3044)) / ((Liq_Ols['FeOt_Liq'] * (1 - Liq_Ols['Fe3Fet_Liq'] ) / 71.844) / (Liq_Ols['MgO_Liq'] / 40.3044)) ) df = pd.DataFrame( data={'T_K_calc': T_K, 'Kd (Fe-Mg) Meas': KdFeMg_Meas}) return df if eq_tests is True: if NiO_Ol_Mol is not None: raise Exception( 'No olivine composition, so cannot calculate equilibrium test. Set eq_tests=False') if P is None: P = 1 print( 'You have not selected a pressure, so we have calculated Toplis Kd at 1kbar') ol_fo = (Liq_Ols['MgO_Ol'] / 40.3044) / \ ((Liq_Ols['MgO_Ol'] / 40.3044) + Liq_Ols['FeOt_Ol'] / 71.844) KdFeMg_Meas = ( ((Liq_Ols['FeOt_Ol'] / 71.844) / (Liq_Ols['MgO_Ol'] / 40.3044)) / ((Liq_Ols['FeOt_Liq'] * (1 - Liq_Ols['Fe3Fet_Liq'] ) / 71.844) / (Liq_Ols['MgO_Liq'] / 40.3044)) ) Kd_func = partial(calculate_toplis2005_kd, SiO2_mol=Liq_Ols['SiO2_Liq_mol_frac'], Na2O_mol=Liq_Ols[ 'Na2O_Liq_mol_frac'], K2O_mol=Liq_Ols['Na2O_Liq_mol_frac'], P=P, H2O=Liq_Ols['H2O_Liq'], T=T_K) Kd_Toplis_calc = Kd_func(ol_fo) DeltaKd_Toplis = KdFeMg_Meas - Kd_Toplis_calc DeltaKd_Roeder = KdFeMg_Meas - 0.3 DeltaKd_Matzen = KdFeMg_Meas - 0.34 DeltaKd_Shea= KdFeMg_Meas-0.335 df = pd.DataFrame(data={'T_K_calc': T_K, 'Kd Meas': KdFeMg_Meas, 'Kd calc (Toplis)': Kd_Toplis_calc, 'ΔKd, Toplis (M-P)': DeltaKd_Toplis, 'ΔKd, Roeder (M-P)': DeltaKd_Roeder, 'ΔKd, Matzen (M-P)': DeltaKd_Matzen, 'ΔKd, Shea (M-P)': DeltaKd_Shea}) df_out = pd.concat([df, Liq_Ols], axis=1) return df_out
## Functions for olivine-spinel thermometry equations
[docs]def T_Coogan2014(P=None, *, Cr_No_sp, Al2O3_Ol, Al2O3_Sp): ''' Aluminum-in-olivine thermometer from Coogan et al. 2014. doi: 10.1016/j.chemgeo.2014.01.004 Uses the Al2O3 content in Olivine, Al2O3 content of Spinel, and the Cr number of the spinel ''' return (10000 / ((0.575) + 0.884 * Cr_No_sp - 0.897 * np.log(Al2O3_Ol / Al2O3_Sp)))
[docs]def T_Wan2008(P=None, *, Cr_No_sp, Al2O3_Ol, Al2O3_Sp): ''' Aluminum-in-olivine thermometer from Wan et al. (2008) - doi: 10.2138/am.2008.2758 Uses the Al2O3 content in Olivine, Al2O3 content of Spinel, and the Cr number of the spinel ''' return (10000 / ((0.512) + 0.873 * Cr_No_sp - 0.91 * np.log(Al2O3_Ol / Al2O3_Sp)))
## Olivine-spinel thermometry function
[docs]def calculate_ol_sp_temp(ol_comps, sp_comps, equationT): ''' calculates temperatures from olivine-spinel pairs. Parameters ------- ol_comps: pandas.DataFrame liquid compositions with column headings SiO2_Ol, MgO_Ol etc sp_comps: pandas.DataFrame spinel compositions with column headings SiO2_Sp, MgO_Sp etc equationT: str Equation choices: | T_Wan2008 | T_Coogan2014 Returns ------- pandas series Temperature in K ''' combo = pd.concat([ol_comps, sp_comps], axis=1) Cr_No = (sp_comps['Cr2O3_Sp'] / 151.99) / \ (sp_comps['Cr2O3_Sp'] / 151.9 + sp_comps['Al2O3_Sp'] / 101.96) combo.insert(1, "Cr_No_sp", Cr_No) if equationT == "T_Coogan2014": T_func = T_Coogan2014 if equationT == "T_Wan2008": T_func = T_Wan2008 kwargs = {name: combo[name] for name, p in inspect.signature( T_func).parameters.items() if p.kind == inspect.Parameter.KEYWORD_ONLY} T_K = T_func(**kwargs) df_T_K = pd.DataFrame(data={'T_K_calc' + str(equationT.strip('T_')): T_K}) return T_K