References

[1]

Matthew LM Gleeson, Sally A Gibson, and Michael J Stock. Upper mantle mush zones beneath low melt flux ocean island volcanoes: insights from isla floreana, galápagos. Journal of Petrology, 61(11-12):egaa094, 2020.

[2]

Melissa A Scruggs and Keith D Putirka. Eruption triggering by partial crystallization of mafic enclaves at chaos crags, lassen volcanic center, california. American Mineralogist: Journal of Earth and Planetary Materials, 103(10):1575–1590, 2018.

[3]

Albert Einstein and Nathan Rosen. The particle problem in the general theory of relativity. Physical Review, 48(1):73, 1935.

[4]

EJF Mutch, JD Blundy, BC Tattitch, FJ Cooper, and RA Brooker. An experimental study of amphibole stability in low-pressure granitic magmas and a revised al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171(10):1–27, 2016.

[5]

Keith D Putirka. Thermometers and barometers for volcanic systems. Reviews in mineralogy and geochemistry, 69(1):61–120, 2008.

[6]

Filippo Ridolfi and Alberto Renzulli. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130° c and 2.2 gpa. Contributions to Mineralogy and Petrology, 163(5):877–895, 2012.

[7]

Max W Schmidt. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the al-in-hornblende barometer. Contributions to mineralogy and petrology, 110(2-3):304–310, 1992.

[8]

Jonathan D Blundy and Timothy JB Holland. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to mineralogy and petrology, 104(2):208–224, 1990.

[9]

MC Johnson. Experimental calibration of an aluminum-in-hornblende geobarometer applicable to calc-alkaline rocks. Eos, 69:1511, 1988.

[10]

Lincoln S Hollister, GC Grissom, EK Peters, HH Stowell, and VB Sisson. Confirmation of the empirical correlation of al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3-4):231–239, 1987.

[11]

Jane M Hammarstrom and E-an Zen. Aluminum in hornblende: an empirical igneous geobarometer. American mineralogist, 71(11-12):1297–1313, 1986.

[12]

J Lawford Anderson and Diane R Smith. The effects of temperature and fo2 on the al-in-hornblende barometer. American Mineralogist, 80(5-6):549–559, 1995.

[13]

Keith Putirka. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101(4):841–858, 2016.

[14]

JF Molina, JA Moreno, A Castro, C Rodríguez, and GB Fershtater. Calcic amphibole thermobarometry in metamorphic and igneous rocks: new calibrations based on plagioclase/amphibole al-si partitioning and amphibole/liquid mg partitioning. Lithos, 232:286–305, 2015.

[15]

Keith Putirka, Marie Johnson, Rosamond Kinzler, John Longhi, and David Walker. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contributions to Mineralogy and Petrology, 123(1):92–108, 1996.

[16]

K Putirka, FJ Ryerson, and H Mikaelian. New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene+ liquid equilibria. American Mineralogist, 88:1542–1554, 2003.

[17]

David A Neave and Keith D Putirka. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under icelandic rift zones. American Mineralogist, 102(4):777–794, 2017.

[18]

Karalee K Brugman and Christy B Till. A low-aluminum clinopyroxene-liquid geothermometer for high-silica magmatic systems. American Mineralogist: Journal of Earth and Planetary Materials, 104(7):996–1004, 2019.

[19]

David A Neave, Enikő Bali, Guðmundur H Guðfinnsson, Sæmundur A Halldórsson, Maren Kahl, André-Sebastian Schmidt, and François Holtz. Clinopyroxene–liquid equilibria and geothermobarometry in natural and experimental tholeiites: the 2014–2015 holuhraun eruption, iceland. Journal of Petrology, 60(8):1653–1680, 2019.

[20]

Paul Beattie. Olivine-melt and orthopyroxene-melt equilibria. Contributions to Mineralogy and Petrology, 115(1):103–111, 1993.

[21]

Keith D Putirka. Igneous thermometers and barometers based on plagioclase+ liquid equilibria: tests of some existing models and new calibrations. American Mineralogist, 90(2-3):336–346, 2005.

[22]

Laura E Waters and Rebecca A Lange. An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. American Mineralogist, 100(10):2172–2184, 2015.

[23]

Bernard J Wood and Shohei Banno. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contributions to Mineralogy and Petrology, 42(2):109–124, 1973.

[24]

Peter RA Wells. Pyroxene thermometry in simple and complex systems. Contributions to mineralogy and Petrology, 62(2):129–139, 1977.

[25]

Gerhard P Brey and T Köhler. Geothermobarometry in four-phase lherzolites ii. new thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31(6):1353–1378, 1990.

[26]

Toru Sugawara. Empirical relationships between temperature, pressure, and mgo content in olivine and pyroxene saturated liquid. Journal of Geophysical Research: Solid Earth, 105(B4):8457–8472, 2000.

[27]

Charlene Montierth, A Dana Johnston, and Katharine V Cashman. An empirical glass-composition-based geothermometer for mauna loa lavas. Washington DC American Geophysical Union Geophysical Monograph Series, 92:207–217, 1995.

[28]

Rosalind Tuthill Helz and Carl R Thornber. Geothermometry of kilauea iki lava lake, hawaii. Bulletin of volcanology, 49(5):651–668, 1987.

[29]

Keith Putirka. Clinopyroxene+ liquid equilibria to 100 kbar and 2450 k. Contributions to Mineralogy and Petrology, 135(2-3):151–163, 1999.

[30]

C Herzberg and MJ O’hara. Plume-associated ultramafic magmas of phanerozoic age. Journal of Petrology, 43(10):1857–1883, 2002.

[31]

TW Sisson and TL Grove. Temperatures and h 2 o contents of low-mgo high-alumina basalts. Contributions to Mineralogy and Petrology, 113(2):167–184, 1993.

[32]

Xiaofei Pu, Rebecca A Lange, and Gordon Moore. A comparison of olivine-melt thermometers based on d mg and d ni: the effects of melt composition, temperature, and pressure with applications to morbs and hydrous arc basalts. American Mineralogist, 102(4):750–765, 2017.

[33]

Xiaofei Pu, Gordon M Moore, Rebecca A Lange, Jack P Touran, and Joel E Gagnon. Experimental evaluation of a new h2o-independent thermometer based on olivine-melt ni partitioning at crustal pressure. American Mineralogist: Journal of Earth and Planetary Materials, 106(2):235–250, 2021.

[34]

Zhihuan Wan, Laurence A Coogan, and Dante Canil. Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. American Mineralogist, 93(7):1142–1147, 2008.

[35]

LA Coogan, AD Saunders, and RN Wilson. Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chemical Geology, 368:1–10, 2014.

[36]

PL Roeder and RFl Emslie. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29(4):275–289, 1970.

[37]

MJ Toplis. The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contributions to Mineralogy and Petrology, 149(1):22–39, 2005.

[38]

Andrew K Matzen, Michael B Baker, John R Beckett, and Edward M Stolper. Fe–mg partitioning between olivine and high-magnesian melts and the nature of hawaiian parental liquids. Journal of Petrology, 52(7-8):1243–1263, 2011.

[39]

ME Pritchard, TA Mather, Stephen R McNutt, FJ Delgado, and K Reath. Thoughts on the criteria to determine the origin of volcanic unrest as magmatic or non-magmatic. Philosophical Transactions of the Royal Society A, 377(2139):20180008, 2019.

[40]

Ben Winpenny and John Maclennan. A partial record of mixing of mantle melts preserved in icelandic phenocrysts. Journal of Petrology, 52(9):1791–1812, 2011.

[41]

Marie Edmonds, Katharine V Cashman, Marian Holness, and Matthew Jackson. Architecture and dynamics of magma reservoirs. 2019.

[42]

Paul J Wallace, Terry Plank, Robert J Bodnar, Glenn A Gaetani, and Thomas Shea. Olivine-hosted melt inclusions: a microscopic perspective on a complex magmatic world. Annual Review of Earth and Planetary Sciences, 2021.

[43]

Simon Matthews, Oliver Shorttle, and John Maclennan. The temperature of the i celandic mantle from olivine-spinel aluminum exchange thermometry. Geochemistry, Geophysics, Geosystems, 17(11):4725–4752, 2016.

[44]

Barry A Walker, Erik W Klemetti, Anita L Grunder, John H Dilles, Frank J Tepley, and Denise Giles. Crystal reaming during the assembly, maturation, and waning of an eleven-million-year crustal magma cycle: thermobarometry of the aucanquilcha volcanic cluster. Contributions to Mineralogy and Petrology, 165(4):663–682, 2013.

[45]

Penny E Wieser, Marie Edmonds, John Maclennan, Frances E Jenner, and Barbara E Kunz. Crystal scavenging from mush piles recorded by melt inclusions. Nature communications, 10(1):1–11, 2019.

[46]

J Brian Balta, Matthew Sanborn, Harry Y McSween Jr, and Meenakshi Wadhwa. Magmatic history and parental melt composition of olivine-phyric shergottite lar 06319: importance of magmatic degassing and olivine antecrysts in martian magmatism. Meteoritics & Planetary Science, 48(8):1359–1382, 2013.

[47]

Glenn A Gaetani, Julie A O’Leary, Nobumichi Shimizu, Claire E Bucholz, and Matthew Newville. Rapid reequilibration of h$_2$o and oxygen fugacity in olivine-hosted melt inclusions. Geology, 40(10):915–918, 2012.

[48]

Silvio Mollo, Keith Putirka, Valeria Misiti, Michele Soligo, and Piergiorgio Scarlato. A new test for equilibrium based on clinopyroxene–melt pairs: clues on the solidification temperatures of etnean alkaline melts at post-eruptive conditions. Chemical Geology, 352:92–100, 2013.

[49]

Matteo Masotta, S Mollo, C Freda, Moore Gaeta, and G Moore. Clinopyroxene–liquid thermometers and barometers specific to alkaline differentiated magmas. Contributions to Mineralogy and Petrology, 166(6):1545–1561, 2013.

[50]

Cin-Ty A Lee and Don L Anderson. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Science Bulletin, 60(13):1141–1156, 2015.

[51]

Morgan J. Williams, Louise Schoneveld, Yajing Mao, Jens Klump, Justin Gosses, Hayden Dalton, Adam Bath, and Steve Barnes. Pyrolite: python for geochemistry. Journal of Open Source Software, 5(50):2314, 2020. URL: https://doi.org/10.21105/joss.02314, doi:10.21105/joss.02314.

[52]

Daniel J Rasmussen, Terry A Plank, Paul J Wallace, Megan E Newcombe, and Jacob B Lowenstern. Vapor-bubble growth in olivine-hosted melt inclusions. American Mineralogist: Journal of Earth and Planetary Materials, 105(12):1898–1919, 2020.

[53]

Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, and others. Array programming with numpy. Nature, 585(7825):357–362, 2020.

[54]

missing journal in reback2020pandas

[55]

Penny E Wieser, Zoja Vukmanovic, Rudiger Kilian, Emilie Ringe, Marian B Holness, John Maclennan, and Marie Edmonds. To sink, swim, twin, or nucleate: a critical appraisal of crystal aggregation processes. Geology, 47(10):948–952, 2019.

[56]

Cansu Culha, Jenny Suckale, Tobias Keller, and Zhipeng Qin. Crystal fractionation by crystal-driven convection. Geophysical Research Letters, 47(4):e2019GL086784, 2020.

[57]

Filippo Ridolfi, Alberto Renzulli, and Matteo Puerini. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160(1):45–66, 2010.

[58]

Linda T Elkins and Timothy L Grove. Ternary feldspar experiments and thermodynamic models. American Mineralogist, 75(5-6):544–559, 1990.

[59]

Sandrin T Feig, Jürgen Koepke, and Jonathan E Snow. Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contributions to Mineralogy and Petrology, 160(4):551–568, 2010.

[60]

Kayla Iacovino, S Matthews, Penny E Wieser, G Moore, and F Begue. Vesical: an open source thermodynamic model engine for mixed volatile solubility in silicate melts. Available at EarthArxiv -https://doi.org/10.31223/X5D606, :, August 2021. URL:, doi:.

[61]

MM Hirschmann, MS Ghiorso, FA Davis, SM Gordon, S Mukherjee, TL Grove, M Krawczynski, E Medard, and CB Till. Library of experimental phase relations (lepr): a database and web portal for experimental magmatic phase equilibria data. Geochemistry, Geophysics, Geosystems, 2008.

[62]

M. Petrelli. Introduction to python in earth science data analysis. Geochemistry, Geophysics, Geosystems, 2021.

[63]

J. D. Hunter. Matplotlib: a 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007. doi:10.1109/MCSE.2007.55.

[64]

C Jorgenson, O Higgins, M Petrelli, and F Begue. A machine learning based approach to clinopyroxene thermobarometry: model optimisation and distribution for use in earth sciences. Eartharxiv, ():, 2021. doi:.

[65]

Wang. Zenodo repo - 10.5281/zenodo.4727870. Zenodo, ():, 2021. doi:.

[66]

Maxim Gavrilenko, Claude Herzberg, Christopher Vidito, Michael J Carr, Travis Tenner, and Alexey Ozerov. A calcium-in-olivine geohygrometer and its application to subduction zone magmatism. Journal of Petrology, 57(9):1811–1832, 2016.

[67]

Michael J Krawczynski, Timothy L Grove, and Harald Behrens. Amphibole stability in primitive arc magmas: effects of temperature, h 2 o content, and oxygen fugacity. Contributions to Mineralogy and Petrology, 164(2):317–339, 2012.

[68]

Roberta L Rudnick. Making continental crust. Nature, 378(6557):571–578, 1995.

[69]

Mihai N Ducea, Jason B Saleeby, and George Bergantz. The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43:299–331, 2015.

[70]

Sumit Chakraborty. Diffusion in solid silicates: a tool to track timescales of processes comes of age. Annu. Rev. Earth Planet. Sci., 36:153–190, 2008.

[71]

missing journal in mutch2021dfens

[72]

Hannah I Shamloo and Christy B Till. Decadal transition from quiescence to supereruption: petrologic investigation of the lava creek tuff, yellowstone caldera, wy. Contributions to Mineralogy and Petrology, 174(4):1–18, 2019.

[73]

Kari M Cooper. Time scales and temperatures of crystal storage in magma reservoirs: implications for magma reservoir dynamics. Philosophical Transactions of the Royal Society A, 377(2139):20180009, 2019.

[74]

Michael J Stock, Marco Bagnardi, David A Neave, John Maclennan, Benjamin Bernard, Iris Buisman, Matthew LM Gleeson, and Dennis Geist. Integrated petrological and geophysical constraints on magma system architecture in the western galápagos archipelago: insights from wolf volcano. Geochemistry, Geophysics, Geosystems, 19(12):4722–4743, 2018.

[75]

Christy B Till. A review and update of mantle thermobarometry for primitive arc magmas. American Mineralogist, 102(5):931–947, 2017.

[76]

Guilherme AR Gualda and Mark S Ghiorso. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-melts. part 1: principles, procedures, and evaluation of the method. Contributions to Mineralogy and Petrology, 168(1):1033, 2014.

[77]

Mark S Ghiorso and Kelsey B Prissel. Enki cloud app: implementation of the fe-ti oxide geothermooxybarometer of ghiorso and evans, 2008. 10.5281/zenodo.3866660, ():1033, 2020.

[78]

Lydia J Harmon, James Cowlyn, Guilherme AR Gualda, and Mark S Ghiorso. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-melts. part 4: plagioclase, orthopyroxene, clinopyroxene, glass geobarometer, and application to mt. ruapehu, new zealand. Contributions to Mineralogy and Petrology, 173(1):7, 2018.

[79]

Roger Powell, TJBH Holland, and Brenton Worley. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using thermocalc. Journal of metamorphic Geology, 16(4):577–588, 1998.

[80]

Benjamin James Andrews, Kenneth S Befus, Dawnika L Blatter, Michelle L Coombs, Rebecca deGraffenried, Julia E Hammer, James E Gardner, Jessica F Larsen, Thomas Shea, and Heather Michelle Nicholson Wright. Rapid experimental determination of magmatic phase equilibria: coordinating a volcanic crisis response protocol. In AGU Fall Meeting Abstracts, volume 2019, V33A–03. 2019.

[81]

Michael J Stock, Madeleine CS Humphreys, Victoria C Smith, Roberto Isaia, and David M Pyle. Late-stage volatile saturation as a potential trigger for explosive volcanic eruptions. Nature Geoscience, 9(3):249–254, 2016.

[82]

Smruti Sourav Rout, Magdalena Blum-Oeste, and Gerhard Wörner. Long-term temperature cycling in a shallow magma reservoir: insights from sanidine megacrysts at taápaca volcano, central andes. Journal of Petrology, 2021.

[83]

Dawid Szymanowski, Jörn-Frederik Wotzlaw, Ben S Ellis, Olivier Bachmann, Marcel Guillong, and Albrecht von Quadt. Protracted near-solidus storage and pre-eruptive rejuvenation of large magma reservoirs. Nature Geoscience, 10(10):777–782, 2017.

[84]

Olivier Bachmann and Michael A Dungan. Temperature-induced al-zoning in hornblendes of the fish canyon magma, colorado. American Mineralogist, 87(8-9):1062–1076, 2002.

[85]

Bernard W Evans, Wes Hildreth, Olivier Bachmann, and Bruno Scaillet. In defense of magnetite-ilmenite thermometry in the bishop tuff and its implication for gradients in silicic magma reservoirs. American Mineralogist, 101(2):469–482, 2016.

[86]

Luca Caricchi, Maurizio Petrelli, Eniko Bali, Tom Sheldrake, Laura Pioli, and Guy Simpson. A data driven approach to investigate the chemical variability of clinopyroxenes from the 2014–2015 holuhraun–bárdarbunga eruption (iceland). Frontiers in Earth Science, 8:18, 2020.

[87]

Matteo Masotta and Silvio Mollo. A new plagioclase-liquid hygrometer specific to trachytic systems. Minerals, 9(6):375, 2019.

[88]

Marc Harper; Bryan Weinstein; Cory Simon; chebee7i; Nick Swanson-Hysell; The Gitter Badger; Maximiliano Greco; Guido Zuidhof. Python-ternary: ternary plots in python. Zenodo: https://zenodo.org/record/34938, 2015.

[89]

Xudong Wang, Tong Hou, Meng Wang, Chao Zhang, Zhaochong Zhang, Ronghao Pan, Felix Marxer, and Hongluo Zhang. A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. European Journal of Mineralogy, 33(5):621–637, 2021.

[90]

missing journal in ryan1996

[91]

Z. J. Sudholz, G. M. Yaxley, A. L. Jaques, and J. Chen. Ni-in-garnet geothermometry in mantle rocks: a high pressure experimental recalibration between 1100 and 1325 °C. Contributions to Mineralogy and Petrology, 176(5):1–16, 2021. doi:10.1007/s00410-021-01791-8.

[92]

Dante Canil. The Ni-in-garnet geothermometer: Calibration at natural abundances. Contributions to Mineralogy and Petrology, 136(3):240–246, 1999. doi:10.1007/s004100050535.

[93]

D. Hasterok and D. S. Chapman. Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307(1-2):59–70, 2011. doi:10.1016/j.epsl.2011.04.034.

[94]

W. L. Griffin, N. I. Fisher, J. H. Friedman, Suzanne Y. O'Reilly, and C. G. Ryan. Cr-pyrope garnets in the lithospheric mantle 2. Compositional populations and their distribution in time and space. Geochemistry, Geophysics, Geosystems, 3(12):1–35, 2002. doi:10.1029/2002gc000298.

[95]

Herman S. Grütter, John J. Gurney, Andrew H. Menzies, and Ferdi Winter. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos, 77(1-4 SPEC. ISS.):841–857, 2004. doi:10.1016/j.lithos.2004.04.012.

[96]

Oliver F. Gaul, W. L. Griffin, Suzanne Y. O'Reilly, and N. J. Pearson. Mapping olivine composition in the lithospheric mantle. Earth and Planetary Science Letters, 182(3-4):223–235, 2000. doi:10.1016/S0012-821X(00)00243-0.

[97]

S. Y. O'Reilly and WL Griffin. Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: geophysical implications. Tectonophysics, 416(1-4):289–309, 2006.

[98]

Corin Jorgenson, Oliver Higgins, Maurizio Petrelli, Florence Bégué, and Luca Caricchi. A machine learning based approach to clinopyroxene thermobarometry: model optimisation and distribution for use in earth sciences. Journal of Geophysical Research: Solid Earth, pages e2021JB022904, 2021.