This page was generated from docs/Examples/Feldspar_Thermobarometry/Feldspar_Liquid_Thermobarometry.ipynb. Interactive online version: .
Feldspar-liquid thermobarometry
Unlike for Cpx and Opx, because the components are calculated the same for Plag and Kspar, we have a single function, calculate_liq_fspar_temp and calculate_liq_fspar_press.
If the mineral is plagioclase, the functions should use plag_comps=dataframe, while if its Kspar, kspar_comps=dataframe
You can download the excel spreadsheet here: https://github.com/PennyWieser/Thermobar/blob/main/docs/Examples/Feldspar_Thermobarometry/Feldspar_Liquid.xlsx
You need to install Thermobar once on your machine, if you haven’t done this yet, uncomment the line below (remove the #)
[1]:
#!pip install Thermobar
first, load python things
[2]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import Thermobar as pt
pd.options.display.max_columns = None
Loading plagioclase- liquid pairs
[3]:
out_PL=pt.import_excel('Feldspar_Liquid.xlsx', sheet_name="Plag_Liquid")
# This extracts a dataframe of all inputs
my_input_PL=out_PL['my_input']
# This extracts a dataframe of plag compositions from the dictionary "out"
Plags=out_PL['Plags']
Liqs_PL=out_PL['Liqs']
Lets check these inputs look good (e.g. not just a load of zeros)
[4]:
display(Plags.head())
display(Liqs_PL.head())
SiO2_Plag | TiO2_Plag | Al2O3_Plag | FeOt_Plag | MnO_Plag | MgO_Plag | CaO_Plag | Na2O_Plag | K2O_Plag | Cr2O3_Plag | Sample_ID_Plag | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 57.3 | 0.09 | 26.6 | 0.43 | 0.0 | 0.03 | 8.33 | 6.11 | 0.49 | 0.0 | 0 |
1 | 56.5 | 0.12 | 26.9 | 0.47 | 0.0 | 0.05 | 8.95 | 5.66 | 0.47 | 0.0 | 1 |
2 | 57.6 | 0.11 | 26.3 | 0.50 | 0.0 | 0.07 | 8.50 | 6.27 | 0.40 | 0.0 | 2 |
3 | 57.2 | 0.16 | 27.0 | 0.62 | 0.0 | 0.06 | 9.03 | 5.58 | 0.84 | 0.0 | 3 |
4 | 56.7 | 0.14 | 27.6 | 0.69 | 0.0 | 0.11 | 9.46 | 5.58 | 0.48 | 0.0 | 4 |
SiO2_Liq | TiO2_Liq | Al2O3_Liq | FeOt_Liq | MnO_Liq | MgO_Liq | CaO_Liq | Na2O_Liq | K2O_Liq | Cr2O3_Liq | P2O5_Liq | H2O_Liq | Fe3Fet_Liq | NiO_Liq | CoO_Liq | CO2_Liq | Sample_ID_Liq | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 49.1 | 3.22 | 14.4 | 14.8 | 0.14 | 3.20 | 6.72 | 3.34 | 1.70 | 0.0 | 1.13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
1 | 49.2 | 3.89 | 15.3 | 13.7 | 0.12 | 3.88 | 6.76 | 3.44 | 1.22 | 0.0 | 0.83 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
2 | 49.6 | 3.79 | 15.8 | 13.0 | 0.14 | 4.26 | 6.59 | 3.65 | 1.04 | 0.0 | 0.63 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 |
3 | 47.1 | 4.21 | 12.0 | 17.8 | 0.18 | 3.40 | 7.28 | 2.93 | 2.02 | 0.0 | 2.32 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3 |
4 | 48.1 | 3.88 | 13.2 | 16.4 | 0.16 | 4.02 | 6.51 | 3.36 | 1.36 | 0.0 | 1.59 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4 |
Loading Kspar-liquid pairs
[5]:
out_KL=pt.import_excel('Feldspar_Liquid.xlsx', sheet_name="Kspar_Liquid")
my_input_KL=out_KL['my_input']
Kspars=out_KL['Kspars']
Liqs_KL=out_KL['Liqs']
# As before, we inspect the outputs
display(Kspars.head())
display(Liqs_KL.head())
SiO2_Kspar | TiO2_Kspar | Al2O3_Kspar | FeOt_Kspar | MnO_Kspar | MgO_Kspar | CaO_Kspar | Na2O_Kspar | K2O_Kspar | Cr2O3_Kspar | Sample_ID_Kspar | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 65.5 | 0.0 | 19.6 | 0.07 | 0.0 | 0.00 | 0.75 | 4.81 | 9.36 | 0.0 | 0 |
1 | 65.4 | 0.0 | 19.4 | 0.05 | 0.0 | 0.00 | 0.59 | 3.13 | 11.50 | 0.0 | 1 |
2 | 64.6 | 0.0 | 18.8 | 0.09 | 0.0 | 0.00 | 0.39 | 1.15 | 14.80 | 0.0 | 2 |
3 | 61.8 | 0.0 | 19.2 | 0.51 | 0.0 | 0.03 | 0.66 | 1.71 | 12.90 | 0.0 | 3 |
4 | 65.1 | 0.0 | 19.2 | 0.05 | 0.0 | 0.00 | 0.36 | 2.87 | 12.60 | 0.0 | 4 |
SiO2_Liq | TiO2_Liq | Al2O3_Liq | FeOt_Liq | MnO_Liq | MgO_Liq | CaO_Liq | Na2O_Liq | K2O_Liq | Cr2O3_Liq | P2O5_Liq | H2O_Liq | Fe3Fet_Liq | NiO_Liq | CoO_Liq | CO2_Liq | Sample_ID_Liq | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 61.71 | 0.45 | 18.56 | 3.17 | 0.27 | 0.23 | 1.64 | 6.11 | 7.09 | 0.0 | 0.02 | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 |
1 | 61.71 | 0.45 | 18.56 | 3.17 | 0.27 | 0.23 | 1.64 | 6.11 | 7.09 | 0.0 | 0.02 | 3 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
2 | 62.71 | 0.45 | 18.56 | 3.17 | 0.27 | 0.23 | 1.64 | 6.11 | 6.09 | 0.0 | 0.02 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 2 |
3 | 62.71 | 0.45 | 18.56 | 3.17 | 0.27 | 0.23 | 1.64 | 6.11 | 6.09 | 0.0 | 0.02 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 3 |
4 | 62.71 | 0.45 | 18.56 | 3.17 | 0.27 | 0.23 | 1.64 | 6.11 | 6.09 | 0.0 | 0.02 | 5 | 0.0 | 0.0 | 0.0 | 0.0 | 4 |
Example 1 - Plagioclase-Liquid thermomometry
to get more information, can always do help(pt.function)
[6]:
help(pt.calculate_fspar_liq_temp)
Help on function calculate_fspar_liq_temp in module Thermobar.feldspar:
calculate_fspar_liq_temp(*, plag_comps=None, kspar_comps=None, meltmatch_plag=None, meltmatch_kspar=None, liq_comps=None, equationT=None, P=None, H2O_Liq=None, eq_tests=False, warnAn=False)
Liquid-Feldspar thermometery (same function for Plag and Kspar),
returns temperature in Kelvin.
Parameters
-------
liq_comps: pandas.DataFrame
liquid compositions with column headings SiO2_Liq, MgO_Liq etc.
kspar_comps or plag_comps (pandas.DataFrame)
Specify kspar_comps=... for Kspar-Liquid thermometry (with column headings SiO2_Kspar, MgO_Kspar) etc
Specify plag_comps=... for Plag-Liquid thermometry (with column headings SiO2_Plag, MgO_Plag) etc
EquationT: str
choose from:
| T_Put2008_eq24b (Kspar-Liq, P-dependent, H2O-independent
| T_Put2008_eq23 (Plag-Liq, P-dependent, H2O-dependent)
| T_Put2008_eq24a (Plag-Liq, P-dependent, H2O-dependent)
P: float, int, pandas.Series, str ("Solve")
Pressure in kbar to perform calculations at
Only needed for P-sensitive thermometers.
If enter P="Solve", returns a partial function
Else, enter an integer, float, or panda series
H2O_Liq: optional.
If None, uses H2O_Liq column from input.
If int, float, pandas.Series, uses this instead of H2O_Liq Column
Returns
-------
Temperature in Kelvin: pandas.Series
If eq_tests is False
Temperature in Kelvin + eq Tests + input compositions: pandas.DataFrame
If eq_tests is True
Temperature using equation 23 at 5 kbar
[7]:
T_PL_eq23_5kbar=pt.calculate_fspar_liq_temp(plag_comps=Plags, liq_comps=Liqs_PL,
equationT="T_Put2008_eq23", P=5)-273.15
T_PL_eq23_5kbar.head()
[7]:
0 1134.869018
1 1150.684489
2 1146.913528
3 1113.581667
4 1119.243338
dtype: float64
Temperature using equation 24a at 5 kbar
[8]:
T_PL_eq24a_5kbar=pt.calculate_fspar_liq_temp(plag_comps=Plags, liq_comps=Liqs_PL,
equationT="T_Put2008_eq24a", P=5)-273.15
T_PL_eq24a_5kbar.head()
[8]:
0 1130.080284
1 1147.341341
2 1142.641914
3 1115.989656
4 1127.162158
dtype: float64
Equilibrium tests
We can also calculate equilibrium tests following the methods described in the supporting information of Putirka (2008) (Fspar-Liq spreadsheet)
By default, no filtering is done, but specifiying eq_tests=True calculates the relevant equilibrium parameters, and then below we show how to filter outputs with different values of these
[9]:
T_PL_eq23_5kbar_EqTests=pt.calculate_fspar_liq_temp(plag_comps=Plags, liq_comps=Liqs_PL,
equationT="T_Put2008_eq23", P=5, eq_tests=True)
T_PL_eq23_5kbar_EqTests.head()
[9]:
T_K_calc | Pass An-Ab Eq Test Put2008? | Delta_An | Delta_Ab | Delta_Or | Pred_An_EqE | Pred_Ab_EqF | Pred_Or_EqG | Obs_Kd_Ab_An | SiO2_Plag | TiO2_Plag | Al2O3_Plag | FeOt_Plag | MnO_Plag | MgO_Plag | CaO_Plag | Na2O_Plag | K2O_Plag | Cr2O3_Plag | Sample_ID_Plag | Si_Plag_cat_prop | Mg_Plag_cat_prop | Fet_Plag_cat_prop | Ca_Plag_cat_prop | Al_Plag_cat_prop | Na_Plag_cat_prop | K_Plag_cat_prop | Mn_Plag_cat_prop | Ti_Plag_cat_prop | Cr_Plag_cat_prop | sum | Si_Plag_cat_frac | Mg_Plag_cat_frac | Fet_Plag_cat_frac | Ca_Plag_cat_frac | Al_Plag_cat_frac | Na_Plag_cat_frac | K_Plag_cat_frac | Mn_Plag_cat_frac | Ti_Plag_cat_frac | Cr_Plag_cat_frac | An_Plag | Ab_Plag | Or_Plag | SiO2_Liq | TiO2_Liq | Al2O3_Liq | FeOt_Liq | MnO_Liq | MgO_Liq | CaO_Liq | Na2O_Liq | K2O_Liq | Cr2O3_Liq | P2O5_Liq | H2O_Liq | Fe3Fet_Liq | NiO_Liq | CoO_Liq | CO2_Liq | Sample_ID_Liq | SiO2_Liq_mol_frac | MgO_Liq_mol_frac | MnO_Liq_mol_frac | FeOt_Liq_mol_frac | CaO_Liq_mol_frac | Al2O3_Liq_mol_frac | Na2O_Liq_mol_frac | K2O_Liq_mol_frac | TiO2_Liq_mol_frac | P2O5_Liq_mol_frac | Cr2O3_Liq_mol_frac | Si_Liq_cat_frac | Mg_Liq_cat_frac | Mn_Liq_cat_frac | Fet_Liq_cat_frac | Ca_Liq_cat_frac | Al_Liq_cat_frac | Na_Liq_cat_frac | K_Liq_cat_frac | Ti_Liq_cat_frac | P_Liq_cat_frac | Cr_Liq_cat_frac | Mg_Number_Liq_NoFe3 | Mg_Number_Liq_Fe3 | P | T | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1408.019018 | High T: No | 0.101016 | 0.152353 | 0.029108 | 0.518145 | 0.401303 | 0.000107 | 0.510102 | 57.3 | 0.09 | 26.6 | 0.43 | 0.0 | 0.03 | 8.33 | 6.11 | 0.49 | 0.0 | 0 | 0.953660 | 0.000744 | 0.005985 | 0.148545 | 0.521768 | 0.197164 | 0.010404 | 0.0 | 0.001127 | 0.0 | 1.839397 | 0.518464 | 0.000405 | 0.003254 | 0.080757 | 0.283663 | 0.107189 | 0.005656 | 0.0 | 0.000613 | 0.0 | 0.417129 | 0.553656 | 0.029215 | 49.1 | 3.22 | 14.4 | 14.8 | 0.14 | 3.20 | 6.72 | 3.34 | 1.70 | 0.0 | 1.13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0.549988 | 0.053436 | 0.001328 | 0.138640 | 0.080652 | 0.095052 | 0.036269 | 0.012146 | 0.027130 | 0.005358 | 0.0 | 0.478739 | 0.046513 | 0.001156 | 0.120680 | 0.070204 | 0.165477 | 0.063141 | 0.021146 | 0.023616 | 0.009328 | 0.0 | 0.278194 | 0.278194 | 5 | 1408.019018 |
1 | 1423.834489 | High T: No | 0.089866 | 0.102459 | 0.027941 | 0.542990 | 0.416085 | 0.000391 | 0.455475 | 56.5 | 0.12 | 26.9 | 0.47 | 0.0 | 0.05 | 8.95 | 5.66 | 0.47 | 0.0 | 1 | 0.940345 | 0.001241 | 0.006542 | 0.159601 | 0.527653 | 0.182643 | 0.009979 | 0.0 | 0.001502 | 0.0 | 1.829506 | 0.513989 | 0.000678 | 0.003576 | 0.087237 | 0.288413 | 0.099832 | 0.005455 | 0.0 | 0.000821 | 0.0 | 0.453125 | 0.518543 | 0.028332 | 49.2 | 3.89 | 15.3 | 13.7 | 0.12 | 3.88 | 6.76 | 3.44 | 1.22 | 0.0 | 0.83 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 0.545500 | 0.064131 | 0.001127 | 0.127030 | 0.080306 | 0.099965 | 0.036975 | 0.008628 | 0.032442 | 0.003896 | 0.0 | 0.474569 | 0.055792 | 0.000980 | 0.110512 | 0.069864 | 0.173933 | 0.064334 | 0.015012 | 0.028224 | 0.006778 | 0.0 | 0.335475 | 0.335475 | 5 | 1423.834489 |
2 | 1420.063528 | High T: No | 0.117189 | 0.110312 | 0.022764 | 0.535451 | 0.447991 | 0.000671 | 0.500004 | 57.6 | 0.11 | 26.3 | 0.50 | 0.0 | 0.07 | 8.50 | 6.27 | 0.40 | 0.0 | 2 | 0.958653 | 0.001737 | 0.006959 | 0.151576 | 0.515884 | 0.202327 | 0.008493 | 0.0 | 0.001377 | 0.0 | 1.847006 | 0.519031 | 0.000940 | 0.003768 | 0.082066 | 0.279308 | 0.109543 | 0.004598 | 0.0 | 0.000746 | 0.0 | 0.418261 | 0.558303 | 0.023435 | 49.6 | 3.79 | 15.8 | 13.0 | 0.14 | 4.26 | 6.59 | 3.65 | 1.04 | 0.0 | 0.63 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | 0.547269 | 0.070071 | 0.001308 | 0.119955 | 0.077907 | 0.102731 | 0.039042 | 0.007319 | 0.031455 | 0.002943 | 0.0 | 0.475045 | 0.060823 | 0.001136 | 0.104124 | 0.067626 | 0.178348 | 0.067779 | 0.012707 | 0.027304 | 0.005108 | 0.0 | 0.368736 | 0.368736 | 5 | 1420.063528 |
3 | 1386.731667 | High T: No | 0.021553 | 0.029279 | 0.049656 | 0.470193 | 0.472391 | 0.000034 | 0.461028 | 57.2 | 0.16 | 27.0 | 0.62 | 0.0 | 0.06 | 9.03 | 5.58 | 0.84 | 0.0 | 3 | 0.951996 | 0.001489 | 0.008630 | 0.161027 | 0.529614 | 0.180061 | 0.017835 | 0.0 | 0.002003 | 0.0 | 1.852655 | 0.513855 | 0.000804 | 0.004658 | 0.086917 | 0.285868 | 0.097191 | 0.009627 | 0.0 | 0.001081 | 0.0 | 0.448640 | 0.501670 | 0.049691 | 47.1 | 4.21 | 12.0 | 17.8 | 0.18 | 3.40 | 7.28 | 2.93 | 2.02 | 0.0 | 2.32 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3 | 0.521269 | 0.056096 | 0.001687 | 0.164747 | 0.086327 | 0.078262 | 0.031436 | 0.014260 | 0.035047 | 0.010869 | 0.0 | 0.459338 | 0.049431 | 0.001487 | 0.145174 | 0.076070 | 0.137927 | 0.055402 | 0.025132 | 0.030883 | 0.019156 | 0.0 | 0.254001 | 0.254001 | 5 | 1386.731667 |
4 | 1392.393338 | High T: Yes | 0.021115 | 0.029107 | 0.028064 | 0.448856 | 0.530743 | 0.000329 | 0.369633 | 56.7 | 0.14 | 27.6 | 0.69 | 0.0 | 0.11 | 9.46 | 5.58 | 0.48 | 0.0 | 4 | 0.943674 | 0.002729 | 0.009604 | 0.168695 | 0.541383 | 0.180061 | 0.010192 | 0.0 | 0.001753 | 0.0 | 1.858092 | 0.507873 | 0.001469 | 0.005169 | 0.090790 | 0.291365 | 0.096907 | 0.005485 | 0.0 | 0.000943 | 0.0 | 0.469971 | 0.501636 | 0.028393 | 48.1 | 3.88 | 13.2 | 16.4 | 0.16 | 4.02 | 6.51 | 3.36 | 1.36 | 0.0 | 1.59 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 0.531999 | 0.066283 | 0.001499 | 0.151693 | 0.077147 | 0.086033 | 0.036027 | 0.009595 | 0.032280 | 0.007444 | 0.0 | 0.467035 | 0.058189 | 0.001316 | 0.133169 | 0.067727 | 0.151055 | 0.063254 | 0.016846 | 0.028338 | 0.013071 | 0.0 | 0.304076 | 0.304076 | 5 | 1392.393338 |
Here we filter based on whether any given pair passes the An-Ab test within the values recomended by Putirka (2008) (T>1050 is 0.28+-0.11, and T<1050 is 0.1+-0.05)
The code uses the calculated temperature to decide what value to compare against, and the print Yes or No, as well as the temperature category it placed it into
Then, we make a variable of true/false called Eq_Filt, where we want it to read True if any of the column ‘Pass An-Ab Eq Test Put2008?’ contains the word yes
By using Loc, we extract the rows of the dataframe T_PL_eq23_5kbar_EqTests where Eq_Filt is True
The new dataframe “T_PL_eq23_filt” contains only pairs passing this filter
[10]:
Eq_filt=T_PL_eq23_5kbar_EqTests['Pass An-Ab Eq Test Put2008?'].str.contains("Yes")
T_PL_eq23_filt=T_PL_eq23_5kbar_EqTests.loc[Eq_filt]
T_PL_eq23_filt.head()
[10]:
T_K_calc | Pass An-Ab Eq Test Put2008? | Delta_An | Delta_Ab | Delta_Or | Pred_An_EqE | Pred_Ab_EqF | Pred_Or_EqG | Obs_Kd_Ab_An | SiO2_Plag | TiO2_Plag | Al2O3_Plag | FeOt_Plag | MnO_Plag | MgO_Plag | CaO_Plag | Na2O_Plag | K2O_Plag | Cr2O3_Plag | Sample_ID_Plag | Si_Plag_cat_prop | Mg_Plag_cat_prop | Fet_Plag_cat_prop | Ca_Plag_cat_prop | Al_Plag_cat_prop | Na_Plag_cat_prop | K_Plag_cat_prop | Mn_Plag_cat_prop | Ti_Plag_cat_prop | Cr_Plag_cat_prop | sum | Si_Plag_cat_frac | Mg_Plag_cat_frac | Fet_Plag_cat_frac | Ca_Plag_cat_frac | Al_Plag_cat_frac | Na_Plag_cat_frac | K_Plag_cat_frac | Mn_Plag_cat_frac | Ti_Plag_cat_frac | Cr_Plag_cat_frac | An_Plag | Ab_Plag | Or_Plag | SiO2_Liq | TiO2_Liq | Al2O3_Liq | FeOt_Liq | MnO_Liq | MgO_Liq | CaO_Liq | Na2O_Liq | K2O_Liq | Cr2O3_Liq | P2O5_Liq | H2O_Liq | Fe3Fet_Liq | NiO_Liq | CoO_Liq | CO2_Liq | Sample_ID_Liq | SiO2_Liq_mol_frac | MgO_Liq_mol_frac | MnO_Liq_mol_frac | FeOt_Liq_mol_frac | CaO_Liq_mol_frac | Al2O3_Liq_mol_frac | Na2O_Liq_mol_frac | K2O_Liq_mol_frac | TiO2_Liq_mol_frac | P2O5_Liq_mol_frac | Cr2O3_Liq_mol_frac | Si_Liq_cat_frac | Mg_Liq_cat_frac | Mn_Liq_cat_frac | Fet_Liq_cat_frac | Ca_Liq_cat_frac | Al_Liq_cat_frac | Na_Liq_cat_frac | K_Liq_cat_frac | Ti_Liq_cat_frac | P_Liq_cat_frac | Cr_Liq_cat_frac | Mg_Number_Liq_NoFe3 | Mg_Number_Liq_Fe3 | P | T | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 1392.393338 | High T: Yes | 0.021115 | 0.029107 | 0.028064 | 0.448856 | 0.530743 | 0.000329 | 0.369633 | 56.7 | 0.14 | 27.6 | 0.69 | 0.0 | 0.11 | 9.46 | 5.58 | 0.48 | 0.0 | 4 | 0.943674 | 0.002729 | 0.009604 | 0.168695 | 0.541383 | 0.180061 | 0.010192 | 0.0 | 0.001753 | 0.0 | 1.858092 | 0.507873 | 0.001469 | 0.005169 | 0.090790 | 0.291365 | 0.096907 | 0.005485 | 0.0 | 0.000943 | 0.0 | 0.469971 | 0.501636 | 0.028393 | 48.1 | 3.88 | 13.2 | 16.40 | 0.16 | 4.02 | 6.51 | 3.36 | 1.36 | 0.0 | 1.59 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 0.531999 | 0.066283 | 0.001499 | 0.151693 | 0.077147 | 0.086033 | 0.036027 | 0.009595 | 0.032280 | 0.007444 | 0.0 | 0.467035 | 0.058189 | 0.001316 | 0.133169 | 0.067727 | 0.151055 | 0.063254 | 0.016846 | 0.028338 | 0.013071 | 0.0 | 0.304076 | 0.304076 | 5 | 1392.393338 |
6 | 1410.107078 | High T: Yes | 0.007695 | 0.037224 | 0.021375 | 0.479576 | 0.527774 | 0.000804 | 0.331605 | 56.1 | 0.21 | 27.8 | 0.56 | 0.0 | 0.09 | 9.94 | 5.53 | 0.38 | 0.0 | 6 | 0.933688 | 0.002233 | 0.007794 | 0.177255 | 0.545307 | 0.178448 | 0.008068 | 0.0 | 0.002629 | 0.0 | 1.855422 | 0.503221 | 0.001204 | 0.004201 | 0.095534 | 0.293899 | 0.096176 | 0.004348 | 0.0 | 0.001417 | 0.0 | 0.487271 | 0.490550 | 0.022180 | 49.5 | 4.23 | 14.8 | 14.00 | 0.16 | 4.63 | 6.36 | 3.76 | 1.04 | 0.0 | 0.69 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6 | 0.540606 | 0.075382 | 0.001480 | 0.127867 | 0.074423 | 0.095250 | 0.039809 | 0.007245 | 0.034749 | 0.003190 | 0.0 | 0.471941 | 0.065807 | 0.001292 | 0.111626 | 0.064970 | 0.166303 | 0.069505 | 0.012650 | 0.030336 | 0.005570 | 0.0 | 0.370875 | 0.370875 | 5 | 1410.107078 |
7 | 1418.246494 | High T: Yes | 0.026281 | 0.006622 | 0.020336 | 0.507864 | 0.503560 | 0.001144 | 0.366685 | 56.4 | 0.20 | 27.3 | 0.53 | 0.0 | 0.08 | 9.61 | 5.48 | 0.36 | 0.0 | 7 | 0.938681 | 0.001985 | 0.007377 | 0.171370 | 0.535499 | 0.176834 | 0.007644 | 0.0 | 0.002504 | 0.0 | 1.841894 | 0.509628 | 0.001078 | 0.004005 | 0.093040 | 0.290733 | 0.096007 | 0.004150 | 0.0 | 0.001359 | 0.0 | 0.481582 | 0.496938 | 0.021480 | 49.5 | 4.04 | 15.3 | 13.50 | 0.13 | 4.65 | 6.39 | 3.62 | 0.90 | 0.0 | 0.66 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | 0.543380 | 0.076096 | 0.001209 | 0.123933 | 0.075158 | 0.098973 | 0.038523 | 0.006302 | 0.033359 | 0.003067 | 0.0 | 0.473796 | 0.066351 | 0.001054 | 0.108063 | 0.065533 | 0.172598 | 0.067180 | 0.010990 | 0.029087 | 0.005348 | 0.0 | 0.380415 | 0.380415 | 5 | 1418.246494 |
8 | 1388.282711 | High T: Yes | 0.044579 | 0.021938 | 0.029839 | 0.444467 | 0.502815 | 0.000237 | 0.368925 | 56.0 | 0.14 | 27.0 | 0.64 | 0.0 | 0.09 | 9.68 | 5.26 | 0.50 | 0.0 | 8 | 0.932024 | 0.002233 | 0.008908 | 0.172619 | 0.529614 | 0.169735 | 0.010616 | 0.0 | 0.001753 | 0.0 | 1.827502 | 0.509999 | 0.001222 | 0.004874 | 0.094456 | 0.289802 | 0.092878 | 0.005809 | 0.0 | 0.000959 | 0.0 | 0.489046 | 0.480877 | 0.030077 | 52.0 | 4.04 | 12.5 | 14.30 | 0.15 | 3.30 | 6.71 | 2.80 | 1.41 | 0.0 | 1.17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | 0.573262 | 0.054234 | 0.001401 | 0.131838 | 0.079258 | 0.081206 | 0.029924 | 0.009915 | 0.033501 | 0.005460 | 0.0 | 0.508885 | 0.048144 | 0.001243 | 0.117033 | 0.070358 | 0.144173 | 0.053128 | 0.017603 | 0.029739 | 0.009694 | 0.0 | 0.291461 | 0.291461 | 5 | 1388.282711 |
9 | 1397.830490 | High T: Yes | 0.107368 | 0.061476 | 0.020652 | 0.445034 | 0.488335 | 0.000087 | 0.197672 | 54.5 | 0.00 | 27.5 | 0.75 | 0.0 | 0.24 | 11.10 | 4.74 | 0.35 | 0.0 | 9 | 0.907059 | 0.005955 | 0.010439 | 0.197941 | 0.539422 | 0.152955 | 0.007431 | 0.0 | 0.000000 | 0.0 | 1.821202 | 0.498055 | 0.003270 | 0.005732 | 0.108687 | 0.296190 | 0.083986 | 0.004080 | 0.0 | 0.000000 | 0.0 | 0.552402 | 0.426859 | 0.020739 | 57.8 | 1.87 | 13.7 | 9.35 | 0.20 | 3.41 | 6.33 | 3.82 | 1.94 | 0.0 | 0.30 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9 | 0.626884 | 0.055134 | 0.001837 | 0.084806 | 0.073559 | 0.087560 | 0.040164 | 0.013421 | 0.015256 | 0.001377 | 0.0 | 0.548684 | 0.048257 | 0.001608 | 0.074227 | 0.064383 | 0.153275 | 0.070308 | 0.023494 | 0.013353 | 0.002411 | 0.0 | 0.393976 | 0.393976 | 5 | 1397.830490 |
Can also add filters based on Delta An, Ab, Or values
Here, new dataframe “T_PL_eq23_filt2” has calculated and predicted An values within 0.05, 0.03 for Or and 0.03 for Ab
[11]:
Eq_filt_An=T_PL_eq23_5kbar_EqTests['Delta_An']<0.05
Eq_filt_Or=T_PL_eq23_5kbar_EqTests['Delta_Or']<0.03
Eq_filt_Ab=T_PL_eq23_5kbar_EqTests['Delta_Ab']<0.03
T_PL_eq23_filt2=T_PL_eq23_5kbar_EqTests.loc[Eq_filt&Eq_filt_An&Eq_filt_Ab&Eq_filt_Or]
T_PL_eq23_filt2
[11]:
T_K_calc | Pass An-Ab Eq Test Put2008? | Delta_An | Delta_Ab | Delta_Or | Pred_An_EqE | Pred_Ab_EqF | Pred_Or_EqG | Obs_Kd_Ab_An | SiO2_Plag | TiO2_Plag | Al2O3_Plag | FeOt_Plag | MnO_Plag | MgO_Plag | CaO_Plag | Na2O_Plag | K2O_Plag | Cr2O3_Plag | Sample_ID_Plag | Si_Plag_cat_prop | Mg_Plag_cat_prop | Fet_Plag_cat_prop | Ca_Plag_cat_prop | Al_Plag_cat_prop | Na_Plag_cat_prop | K_Plag_cat_prop | Mn_Plag_cat_prop | Ti_Plag_cat_prop | Cr_Plag_cat_prop | sum | Si_Plag_cat_frac | Mg_Plag_cat_frac | Fet_Plag_cat_frac | Ca_Plag_cat_frac | Al_Plag_cat_frac | Na_Plag_cat_frac | K_Plag_cat_frac | Mn_Plag_cat_frac | Ti_Plag_cat_frac | Cr_Plag_cat_frac | An_Plag | Ab_Plag | Or_Plag | SiO2_Liq | TiO2_Liq | Al2O3_Liq | FeOt_Liq | MnO_Liq | MgO_Liq | CaO_Liq | Na2O_Liq | K2O_Liq | Cr2O3_Liq | P2O5_Liq | H2O_Liq | Fe3Fet_Liq | NiO_Liq | CoO_Liq | CO2_Liq | Sample_ID_Liq | SiO2_Liq_mol_frac | MgO_Liq_mol_frac | MnO_Liq_mol_frac | FeOt_Liq_mol_frac | CaO_Liq_mol_frac | Al2O3_Liq_mol_frac | Na2O_Liq_mol_frac | K2O_Liq_mol_frac | TiO2_Liq_mol_frac | P2O5_Liq_mol_frac | Cr2O3_Liq_mol_frac | Si_Liq_cat_frac | Mg_Liq_cat_frac | Mn_Liq_cat_frac | Fet_Liq_cat_frac | Ca_Liq_cat_frac | Al_Liq_cat_frac | Na_Liq_cat_frac | K_Liq_cat_frac | Ti_Liq_cat_frac | P_Liq_cat_frac | Cr_Liq_cat_frac | Mg_Number_Liq_NoFe3 | Mg_Number_Liq_Fe3 | P | T | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 1392.393338 | High T: Yes | 0.021115 | 0.029107 | 0.028064 | 0.448856 | 0.530743 | 0.000329 | 0.369633 | 56.70 | 0.14 | 27.60 | 0.69 | 0.00 | 0.11 | 9.46 | 5.58 | 0.48 | 0.0 | 4 | 0.943674 | 0.002729 | 0.009604 | 0.168695 | 0.541383 | 0.180061 | 0.010192 | 0.000000 | 0.001753 | 0.0 | 1.858092 | 0.507873 | 0.001469 | 0.005169 | 0.090790 | 0.291365 | 0.096907 | 0.005485 | 0.000000 | 0.000943 | 0.0 | 0.469971 | 0.501636 | 0.028393 | 48.10 | 3.88 | 13.20 | 16.40 | 0.16 | 4.02 | 6.51 | 3.36 | 1.36 | 0.0 | 1.59 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 0.531999 | 0.066283 | 0.001499 | 0.151693 | 0.077147 | 0.086033 | 0.036027 | 0.009595 | 0.032280 | 0.007444 | 0.0 | 0.467035 | 0.058189 | 0.001316 | 0.133169 | 0.067727 | 0.151055 | 0.063254 | 0.016846 | 0.028338 | 0.013071 | 0.0 | 0.304076 | 0.304076 | 5 | 1392.393338 |
7 | 1418.246494 | High T: Yes | 0.026281 | 0.006622 | 0.020336 | 0.507864 | 0.503560 | 0.001144 | 0.366685 | 56.40 | 0.20 | 27.30 | 0.53 | 0.00 | 0.08 | 9.61 | 5.48 | 0.36 | 0.0 | 7 | 0.938681 | 0.001985 | 0.007377 | 0.171370 | 0.535499 | 0.176834 | 0.007644 | 0.000000 | 0.002504 | 0.0 | 1.841894 | 0.509628 | 0.001078 | 0.004005 | 0.093040 | 0.290733 | 0.096007 | 0.004150 | 0.000000 | 0.001359 | 0.0 | 0.481582 | 0.496938 | 0.021480 | 49.50 | 4.04 | 15.30 | 13.50 | 0.13 | 4.65 | 6.39 | 3.62 | 0.90 | 0.0 | 0.66 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | 0.543380 | 0.076096 | 0.001209 | 0.123933 | 0.075158 | 0.098973 | 0.038523 | 0.006302 | 0.033359 | 0.003067 | 0.0 | 0.473796 | 0.066351 | 0.001054 | 0.108063 | 0.065533 | 0.172598 | 0.067180 | 0.010990 | 0.029087 | 0.005348 | 0.0 | 0.380415 | 0.380415 | 5 | 1418.246494 |
8 | 1388.282711 | High T: Yes | 0.044579 | 0.021938 | 0.029839 | 0.444467 | 0.502815 | 0.000237 | 0.368925 | 56.00 | 0.14 | 27.00 | 0.64 | 0.00 | 0.09 | 9.68 | 5.26 | 0.50 | 0.0 | 8 | 0.932024 | 0.002233 | 0.008908 | 0.172619 | 0.529614 | 0.169735 | 0.010616 | 0.000000 | 0.001753 | 0.0 | 1.827502 | 0.509999 | 0.001222 | 0.004874 | 0.094456 | 0.289802 | 0.092878 | 0.005809 | 0.000000 | 0.000959 | 0.0 | 0.489046 | 0.480877 | 0.030077 | 52.00 | 4.04 | 12.50 | 14.30 | 0.15 | 3.30 | 6.71 | 2.80 | 1.41 | 0.0 | 1.17 | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 8 | 0.573262 | 0.054234 | 0.001401 | 0.131838 | 0.079258 | 0.081206 | 0.029924 | 0.009915 | 0.033501 | 0.005460 | 0.0 | 0.508885 | 0.048144 | 0.001243 | 0.117033 | 0.070358 | 0.144173 | 0.053128 | 0.017603 | 0.029739 | 0.009694 | 0.0 | 0.291461 | 0.291461 | 5 | 1388.282711 |
19 | 1514.271339 | High T: Yes | 0.042248 | 0.013302 | 0.005014 | 0.804288 | 0.219359 | 0.000286 | 0.296268 | 48.73 | 0.06 | 31.46 | 0.35 | 0.00 | 0.22 | 15.41 | 2.60 | 0.09 | 0.0 | 19 | 0.811027 | 0.005458 | 0.004872 | 0.274799 | 0.617099 | 0.083900 | 0.001911 | 0.000000 | 0.000751 | 0.0 | 1.799816 | 0.450617 | 0.003033 | 0.002707 | 0.152682 | 0.342868 | 0.046616 | 0.001062 | 0.000000 | 0.000417 | 0.0 | 0.762040 | 0.232661 | 0.005299 | 48.07 | 1.63 | 16.16 | 10.16 | 0.20 | 7.72 | 11.39 | 2.57 | 0.50 | 0.0 | 0.28 | 0.06 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | 0.510696 | 0.122268 | 0.001800 | 0.090269 | 0.129654 | 0.101171 | 0.026469 | 0.003388 | 0.013026 | 0.001259 | 0.0 | 0.451030 | 0.107983 | 0.001589 | 0.079723 | 0.114506 | 0.178702 | 0.046753 | 0.005985 | 0.011504 | 0.002224 | 0.0 | 0.575272 | 0.575272 | 5 | 1514.271339 |
23 | 1431.136469 | High T: Yes | 0.013393 | 0.027520 | 0.018570 | 0.605008 | 0.335482 | 0.000026 | 0.290997 | 53.35 | 0.23 | 28.83 | 0.83 | 0.01 | 0.32 | 12.67 | 4.11 | 0.32 | 0.0 | 23 | 0.887919 | 0.007940 | 0.011552 | 0.225938 | 0.565510 | 0.132626 | 0.006794 | 0.000141 | 0.002879 | 0.0 | 1.841300 | 0.482224 | 0.004312 | 0.006274 | 0.122706 | 0.307126 | 0.072028 | 0.003690 | 0.000077 | 0.001564 | 0.0 | 0.618401 | 0.363002 | 0.018596 | 48.01 | 4.17 | 13.25 | 13.39 | 0.23 | 4.81 | 9.57 | 3.47 | 1.42 | 0.0 | 0.86 | 0.26 | 0.0 | 0.0 | 0.0 | 0.0 | 23 | 0.519558 | 0.077599 | 0.002108 | 0.121182 | 0.110965 | 0.084498 | 0.036404 | 0.009802 | 0.033944 | 0.003940 | 0.0 | 0.457904 | 0.068391 | 0.001858 | 0.106802 | 0.097797 | 0.148941 | 0.064168 | 0.017278 | 0.029916 | 0.006944 | 0.0 | 0.390366 | 0.390366 | 5 | 1431.136469 |
Example 2 - Plagioclase-Liquid barometry
Note, Putirka (2008) questions whether plagioclase barometers are at all accurate, so use with extreme caution
[16]:
Press=pt.calculate_fspar_liq_press(liq_comps=Liqs_PL, plag_comps=Plags,
equationP="P_Put2008_eq25", T=1300)
Press.head()
[16]:
0 4.041798
1 3.060993
2 3.936693
3 2.432249
4 0.986835
dtype: float64
[13]:
Press=pt.calculate_fspar_liq_press(liq_comps=Liqs_PL, plag_comps=Plags,
equationP="P_Put2008_eq25", T=1300, eq_tests=True)
Press.head()
[13]:
Pass An-Ab Eq Test Put2008? | P_kbar_calc | Delta_An | Delta_Ab | Delta_Or | Pred_An_EqE | Pred_Ab_EqF | Pred_Or_EqG | Obs_Kd_Ab_An | SiO2_Plag | TiO2_Plag | Al2O3_Plag | FeOt_Plag | MnO_Plag | MgO_Plag | CaO_Plag | Na2O_Plag | K2O_Plag | Cr2O3_Plag | Sample_ID_Plag | Si_Plag_cat_prop | Mg_Plag_cat_prop | Fet_Plag_cat_prop | Ca_Plag_cat_prop | Al_Plag_cat_prop | Na_Plag_cat_prop | K_Plag_cat_prop | Mn_Plag_cat_prop | Ti_Plag_cat_prop | Cr_Plag_cat_prop | sum | Si_Plag_cat_frac | Mg_Plag_cat_frac | Fet_Plag_cat_frac | Ca_Plag_cat_frac | Al_Plag_cat_frac | Na_Plag_cat_frac | K_Plag_cat_frac | Mn_Plag_cat_frac | Ti_Plag_cat_frac | Cr_Plag_cat_frac | An_Plag | Ab_Plag | Or_Plag | SiO2_Liq | TiO2_Liq | Al2O3_Liq | FeOt_Liq | MnO_Liq | MgO_Liq | CaO_Liq | Na2O_Liq | K2O_Liq | Cr2O3_Liq | P2O5_Liq | H2O_Liq | Fe3Fet_Liq | NiO_Liq | CoO_Liq | CO2_Liq | Sample_ID_Liq | SiO2_Liq_mol_frac | MgO_Liq_mol_frac | MnO_Liq_mol_frac | FeOt_Liq_mol_frac | CaO_Liq_mol_frac | Al2O3_Liq_mol_frac | Na2O_Liq_mol_frac | K2O_Liq_mol_frac | TiO2_Liq_mol_frac | P2O5_Liq_mol_frac | Cr2O3_Liq_mol_frac | Si_Liq_cat_frac | Mg_Liq_cat_frac | Mn_Liq_cat_frac | Fet_Liq_cat_frac | Ca_Liq_cat_frac | Al_Liq_cat_frac | Na_Liq_cat_frac | K_Liq_cat_frac | Ti_Liq_cat_frac | P_Liq_cat_frac | Cr_Liq_cat_frac | Mg_Number_Liq_NoFe3 | Mg_Number_Liq_Fe3 | P | T | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Low T: No | 4.041798 | 0.035285 | 0.052459 | 0.029156 | 0.452414 | 0.501197 | 0.000059 | 0.510102 | 57.3 | 0.09 | 26.6 | 0.43 | 0.0 | 0.03 | 8.33 | 6.11 | 0.49 | 0.0 | 0 | 0.953660 | 0.000744 | 0.005985 | 0.148545 | 0.521768 | 0.197164 | 0.010404 | 0.0 | 0.001127 | 0.0 | 1.839397 | 0.518464 | 0.000405 | 0.003254 | 0.080757 | 0.283663 | 0.107189 | 0.005656 | 0.0 | 0.000613 | 0.0 | 0.417129 | 0.553656 | 0.029215 | 49.1 | 3.22 | 14.4 | 14.8 | 0.14 | 3.20 | 6.72 | 3.34 | 1.70 | 0.0 | 1.13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0.549988 | 0.053436 | 0.001328 | 0.138640 | 0.080652 | 0.095052 | 0.036269 | 0.012146 | 0.027130 | 0.005358 | 0.0 | 0.478739 | 0.046513 | 0.001156 | 0.120680 | 0.070204 | 0.165477 | 0.063141 | 0.021146 | 0.023616 | 0.009328 | 0.0 | 0.278194 | 0.278194 | 4.041798 | 1300 |
1 | Low T: No | 3.060993 | 0.024460 | 0.002030 | 0.028134 | 0.477584 | 0.516514 | 0.000198 | 0.455475 | 56.5 | 0.12 | 26.9 | 0.47 | 0.0 | 0.05 | 8.95 | 5.66 | 0.47 | 0.0 | 1 | 0.940345 | 0.001241 | 0.006542 | 0.159601 | 0.527653 | 0.182643 | 0.009979 | 0.0 | 0.001502 | 0.0 | 1.829506 | 0.513989 | 0.000678 | 0.003576 | 0.087237 | 0.288413 | 0.099832 | 0.005455 | 0.0 | 0.000821 | 0.0 | 0.453125 | 0.518543 | 0.028332 | 49.2 | 3.89 | 15.3 | 13.7 | 0.12 | 3.88 | 6.76 | 3.44 | 1.22 | 0.0 | 0.83 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 0.545500 | 0.064131 | 0.001127 | 0.127030 | 0.080306 | 0.099965 | 0.036975 | 0.008628 | 0.032442 | 0.003896 | 0.0 | 0.474569 | 0.055792 | 0.000980 | 0.110512 | 0.069864 | 0.173933 | 0.064334 | 0.015012 | 0.028224 | 0.006778 | 0.0 | 0.335475 | 0.335475 | 3.060993 | 1300 |
2 | Low T: No | 3.936693 | 0.042934 | 0.013869 | 0.023090 | 0.461195 | 0.572172 | 0.000346 | 0.500004 | 57.6 | 0.11 | 26.3 | 0.50 | 0.0 | 0.07 | 8.50 | 6.27 | 0.40 | 0.0 | 2 | 0.958653 | 0.001737 | 0.006959 | 0.151576 | 0.515884 | 0.202327 | 0.008493 | 0.0 | 0.001377 | 0.0 | 1.847006 | 0.519031 | 0.000940 | 0.003768 | 0.082066 | 0.279308 | 0.109543 | 0.004598 | 0.0 | 0.000746 | 0.0 | 0.418261 | 0.558303 | 0.023435 | 49.6 | 3.79 | 15.8 | 13.0 | 0.14 | 4.26 | 6.59 | 3.65 | 1.04 | 0.0 | 0.63 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2 | 0.547269 | 0.070071 | 0.001308 | 0.119955 | 0.077907 | 0.102731 | 0.039042 | 0.007319 | 0.031455 | 0.002943 | 0.0 | 0.475045 | 0.060823 | 0.001136 | 0.104124 | 0.067626 | 0.178348 | 0.067779 | 0.012707 | 0.027304 | 0.005108 | 0.0 | 0.368736 | 0.368736 | 3.936693 | 1300 |
3 | Low T: No | 2.432249 | 0.004628 | 0.023672 | 0.049670 | 0.444011 | 0.525342 | 0.000021 | 0.461028 | 57.2 | 0.16 | 27.0 | 0.62 | 0.0 | 0.06 | 9.03 | 5.58 | 0.84 | 0.0 | 3 | 0.951996 | 0.001489 | 0.008630 | 0.161027 | 0.529614 | 0.180061 | 0.017835 | 0.0 | 0.002003 | 0.0 | 1.852655 | 0.513855 | 0.000804 | 0.004658 | 0.086917 | 0.285868 | 0.097191 | 0.009627 | 0.0 | 0.001081 | 0.0 | 0.448640 | 0.501670 | 0.049691 | 47.1 | 4.21 | 12.0 | 17.8 | 0.18 | 3.40 | 7.28 | 2.93 | 2.02 | 0.0 | 2.32 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3 | 0.521269 | 0.056096 | 0.001687 | 0.164747 | 0.086327 | 0.078262 | 0.031436 | 0.014260 | 0.035047 | 0.010869 | 0.0 | 0.459338 | 0.049431 | 0.001487 | 0.145174 | 0.076070 | 0.137927 | 0.055402 | 0.025132 | 0.030883 | 0.019156 | 0.0 | 0.254001 | 0.254001 | 2.432249 | 1300 |
4 | Low T: No | 0.986835 | 0.031026 | 0.061152 | 0.028197 | 0.438945 | 0.562788 | 0.000196 | 0.369633 | 56.7 | 0.14 | 27.6 | 0.69 | 0.0 | 0.11 | 9.46 | 5.58 | 0.48 | 0.0 | 4 | 0.943674 | 0.002729 | 0.009604 | 0.168695 | 0.541383 | 0.180061 | 0.010192 | 0.0 | 0.001753 | 0.0 | 1.858092 | 0.507873 | 0.001469 | 0.005169 | 0.090790 | 0.291365 | 0.096907 | 0.005485 | 0.0 | 0.000943 | 0.0 | 0.469971 | 0.501636 | 0.028393 | 48.1 | 3.88 | 13.2 | 16.4 | 0.16 | 4.02 | 6.51 | 3.36 | 1.36 | 0.0 | 1.59 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4 | 0.531999 | 0.066283 | 0.001499 | 0.151693 | 0.077147 | 0.086033 | 0.036027 | 0.009595 | 0.032280 | 0.007444 | 0.0 | 0.467035 | 0.058189 | 0.001316 | 0.133169 | 0.067727 | 0.151055 | 0.063254 | 0.016846 | 0.028338 | 0.013071 | 0.0 | 0.304076 | 0.304076 | 0.986835 | 1300 |
Example 4 - Kspar-Liquid thermometry
[14]:
T_KL_24=pt.calculate_fspar_liq_temp(kspar_comps=Kspars, liq_comps=Liqs_KL,
equationT="T_Put2008_eq24b", P=5)-273.15
T_KL_24.head()
[14]:
0 931.611608
1 874.979583
2 700.236443
3 745.871566
4 795.809510
dtype: float64
[15]:
# Currently, we haven't implemented any equilibrium tests for Kfeldspar.
T_KL_24=pt.calculate_fspar_liq_temp(kspar_comps=Kspars, liq_comps=Liqs_KL,
equationT="T_Put2008_eq24b", P=5, eq_tests=True)-273.15
T_KL_24.head()
Sorry, no equilibrium tests implemented for Kspar-Liquid
[15]:
0 931.611608
1 874.979583
2 700.236443
3 745.871566
4 795.809510
dtype: float64